Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3184 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{3}X_{1}$ + ${ }M_{2}M_{8}$ 0.6591 0.8332 0.7911 [X:[1.6165], M:[0.6825, 0.8514, 0.3835, 1.1504, 0.8496, 0.6843, 0.7651, 1.1486], q:[0.8918, 0.4257], qb:[0.7247, 0.4239], phi:[0.3835]] [X:[[0, 1]], M:[[2, -10], [-2, 6], [0, -1], [0, -3], [0, 3], [0, -7], [2, -5], [2, -6]], q:[[-1, 7], [-1, 3]], qb:[[1, -6], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{6}$, ${ }M_{7}$, ${ }\phi_{1}^{2}$, ${ }M_{5}$, ${ }M_{8}$, ${ }M_{4}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{1}M_{7}$, ${ }M_{6}M_{7}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{7}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{5}M_{7}$, ${ }M_{5}\phi_{1}^{2}$, ${ }X_{1}$, ${ }M_{5}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{8}$, ${ }M_{1}M_{4}$, ${ }M_{6}M_{8}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{7}M_{8}$, ${ }M_{1}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{7}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{5}M_{8}$, ${ }M_{7}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{2}$ ${}\phi_{1}^{3}q_{2}\tilde{q}_{2}$ -1 t^2.047 + t^2.053 + t^2.295 + t^2.301 + t^2.549 + t^3.446 + t^3.451 + t^3.694 + t^3.699 + t^4.095 + t^4.1 + t^4.106 + t^4.343 + 2*t^4.348 + t^4.354 + t^4.591 + 2*t^4.596 + 2*t^4.602 + t^4.844 + 2*t^4.85 + t^5.097 + t^5.493 + 2*t^5.499 + t^5.504 + 2*t^5.741 + 3*t^5.747 + t^5.752 + t^5.989 + 2*t^5.994 - t^6. - t^6.006 + t^6.142 + t^6.148 + t^6.153 + t^6.159 + t^6.242 - t^6.253 + t^6.39 + 2*t^6.396 + 2*t^6.401 + t^6.407 + t^6.638 + 3*t^6.644 + 3*t^6.649 + 2*t^6.655 + t^6.886 + 3*t^6.891 + 4*t^6.897 + 3*t^6.903 + 2*t^7.139 + 3*t^7.145 + t^7.15 - t^7.156 + t^7.387 + t^7.393 - t^7.398 - 2*t^7.404 + t^7.54 + 2*t^7.546 + 2*t^7.552 + t^7.557 - t^7.652 + 2*t^7.788 + 4*t^7.794 + 3*t^7.799 + t^7.805 + 2*t^8.036 + 4*t^8.042 + t^8.047 - 2*t^8.053 - t^8.058 + t^8.19 + t^8.195 + t^8.201 + t^8.206 + t^8.212 + t^8.284 + 3*t^8.29 - 3*t^8.301 - 2*t^8.306 + t^8.437 + 2*t^8.443 + 2*t^8.449 + 2*t^8.454 + t^8.46 + t^8.538 + t^8.543 - 4*t^8.549 - 3*t^8.554 + t^8.685 + 3*t^8.691 + 4*t^8.696 + 3*t^8.702 + 2*t^8.708 + t^8.791 - t^8.797 - 2*t^8.802 + t^8.933 + 4*t^8.939 + 6*t^8.944 + 5*t^8.95 + 3*t^8.955 - t^4.15/y - t^6.198/y - t^6.203/y - t^6.446/y - t^6.451/y + t^7.1/y + t^7.343/y + (2*t^7.348)/y + t^7.354/y + (2*t^7.596)/y + t^7.602/y + t^7.844/y + (2*t^7.85)/y + t^7.855/y + t^8.097/y + t^8.103/y - t^8.245/y - t^8.251/y - t^8.256/y + t^8.741/y + (3*t^8.747)/y + t^8.752/y + t^8.989/y + (3*t^8.994)/y - t^4.15*y - t^6.198*y - t^6.203*y - t^6.446*y - t^6.451*y + t^7.1*y + t^7.343*y + 2*t^7.348*y + t^7.354*y + 2*t^7.596*y + t^7.602*y + t^7.844*y + 2*t^7.85*y + t^7.855*y + t^8.097*y + t^8.103*y - t^8.245*y - t^8.251*y - t^8.256*y + t^8.741*y + 3*t^8.747*y + t^8.752*y + t^8.989*y + 3*t^8.994*y (g1^2*t^2.047)/g2^10 + t^2.053/g2^7 + (g1^2*t^2.295)/g2^5 + t^2.301/g2^2 + g2^3*t^2.549 + (g1^2*t^3.446)/g2^6 + t^3.451/g2^3 + (g1^2*t^3.694)/g2 + g2^2*t^3.699 + (g1^4*t^4.095)/g2^20 + (g1^2*t^4.1)/g2^17 + t^4.106/g2^14 + (g1^4*t^4.343)/g2^15 + (2*g1^2*t^4.348)/g2^12 + t^4.354/g2^9 + (g1^4*t^4.591)/g2^10 + (2*g1^2*t^4.596)/g2^7 + (2*t^4.602)/g2^4 + (g1^2*t^4.844)/g2^2 + 2*g2*t^4.85 + g2^6*t^5.097 + (g1^4*t^5.493)/g2^16 + (2*g1^2*t^5.499)/g2^13 + t^5.504/g2^10 + (2*g1^4*t^5.741)/g2^11 + (3*g1^2*t^5.747)/g2^8 + t^5.752/g2^5 + (g1^4*t^5.989)/g2^6 + (2*g1^2*t^5.994)/g2^3 - t^6. - (g2^3*t^6.006)/g1^2 + (g1^6*t^6.142)/g2^30 + (g1^4*t^6.148)/g2^27 + (g1^2*t^6.153)/g2^24 + t^6.159/g2^21 + g1^2*g2^2*t^6.242 - (g2^8*t^6.253)/g1^2 + (g1^6*t^6.39)/g2^25 + (2*g1^4*t^6.396)/g2^22 + (2*g1^2*t^6.401)/g2^19 + t^6.407/g2^16 + (g1^6*t^6.638)/g2^20 + (3*g1^4*t^6.644)/g2^17 + (3*g1^2*t^6.649)/g2^14 + (2*t^6.655)/g2^11 + (g1^6*t^6.886)/g2^15 + (3*g1^4*t^6.891)/g2^12 + (4*g1^2*t^6.897)/g2^9 + (3*t^6.903)/g2^6 + (2*g1^4*t^7.139)/g2^7 + (3*g1^2*t^7.145)/g2^4 + t^7.15/g2 - (g2^2*t^7.156)/g1^2 + (g1^4*t^7.387)/g2^2 + g1^2*g2*t^7.393 - g2^4*t^7.398 - (2*g2^7*t^7.404)/g1^2 + (g1^6*t^7.54)/g2^26 + (2*g1^4*t^7.546)/g2^23 + (2*g1^2*t^7.552)/g2^20 + t^7.557/g2^17 - (g2^12*t^7.652)/g1^2 + (2*g1^6*t^7.788)/g2^21 + (4*g1^4*t^7.794)/g2^18 + (3*g1^2*t^7.799)/g2^15 + t^7.805/g2^12 + (2*g1^6*t^8.036)/g2^16 + (4*g1^4*t^8.042)/g2^13 + (g1^2*t^8.047)/g2^10 - (2*t^8.053)/g2^7 - t^8.058/(g1^2*g2^4) + (g1^8*t^8.19)/g2^40 + (g1^6*t^8.195)/g2^37 + (g1^4*t^8.201)/g2^34 + (g1^2*t^8.206)/g2^31 + t^8.212/g2^28 + (g1^6*t^8.284)/g2^11 + (3*g1^4*t^8.29)/g2^8 - (3*t^8.301)/g2^2 - (2*g2*t^8.306)/g1^2 + (g1^8*t^8.437)/g2^35 + (2*g1^6*t^8.443)/g2^32 + (2*g1^4*t^8.449)/g2^29 + (2*g1^2*t^8.454)/g2^26 + t^8.46/g2^23 + (g1^4*t^8.538)/g2^3 + g1^2*t^8.543 - 4*g2^3*t^8.549 - (3*g2^6*t^8.554)/g1^2 + (g1^8*t^8.685)/g2^30 + (3*g1^6*t^8.691)/g2^27 + (4*g1^4*t^8.696)/g2^24 + (3*g1^2*t^8.702)/g2^21 + (2*t^8.708)/g2^18 + g1^2*g2^5*t^8.791 - g2^8*t^8.797 - (2*g2^11*t^8.802)/g1^2 + (g1^8*t^8.933)/g2^25 + (4*g1^6*t^8.939)/g2^22 + (6*g1^4*t^8.944)/g2^19 + (5*g1^2*t^8.95)/g2^16 + (3*t^8.955)/g2^13 - t^4.15/(g2*y) - (g1^2*t^6.198)/(g2^11*y) - t^6.203/(g2^8*y) - (g1^2*t^6.446)/(g2^6*y) - t^6.451/(g2^3*y) + (g1^2*t^7.1)/(g2^17*y) + (g1^4*t^7.343)/(g2^15*y) + (2*g1^2*t^7.348)/(g2^12*y) + t^7.354/(g2^9*y) + (2*g1^2*t^7.596)/(g2^7*y) + t^7.602/(g2^4*y) + (g1^2*t^7.844)/(g2^2*y) + (2*g2*t^7.85)/y + (g2^4*t^7.855)/(g1^2*y) + (g2^6*t^8.097)/y + (g2^9*t^8.103)/(g1^2*y) - (g1^4*t^8.245)/(g2^21*y) - (g1^2*t^8.251)/(g2^18*y) - t^8.256/(g2^15*y) + (g1^4*t^8.741)/(g2^11*y) + (3*g1^2*t^8.747)/(g2^8*y) + t^8.752/(g2^5*y) + (g1^4*t^8.989)/(g2^6*y) + (3*g1^2*t^8.994)/(g2^3*y) - (t^4.15*y)/g2 - (g1^2*t^6.198*y)/g2^11 - (t^6.203*y)/g2^8 - (g1^2*t^6.446*y)/g2^6 - (t^6.451*y)/g2^3 + (g1^2*t^7.1*y)/g2^17 + (g1^4*t^7.343*y)/g2^15 + (2*g1^2*t^7.348*y)/g2^12 + (t^7.354*y)/g2^9 + (2*g1^2*t^7.596*y)/g2^7 + (t^7.602*y)/g2^4 + (g1^2*t^7.844*y)/g2^2 + 2*g2*t^7.85*y + (g2^4*t^7.855*y)/g1^2 + g2^6*t^8.097*y + (g2^9*t^8.103*y)/g1^2 - (g1^4*t^8.245*y)/g2^21 - (g1^2*t^8.251*y)/g2^18 - (t^8.256*y)/g2^15 + (g1^4*t^8.741*y)/g2^11 + (3*g1^2*t^8.747*y)/g2^8 + (t^8.752*y)/g2^5 + (g1^4*t^8.989*y)/g2^6 + (3*g1^2*t^8.994*y)/g2^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2102 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{3}X_{1}$ 0.6733 0.8548 0.7876 [X:[1.6169], M:[0.7116, 0.8206, 0.3831, 1.1492, 0.8508, 0.6814, 0.7963], q:[0.8781, 0.4103], qb:[0.7389, 0.4405], phi:[0.3831]] t^2.044 + t^2.135 + t^2.298 + t^2.389 + t^2.462 + t^2.552 + t^3.448 + t^3.702 + t^3.792 + t^4.088 + t^4.179 + t^4.27 + t^4.343 + 2*t^4.433 + t^4.506 + t^4.524 + 3*t^4.597 + 2*t^4.687 + t^4.76 + t^4.778 + 3*t^4.851 + t^4.924 + t^4.941 + t^5.014 + t^5.105 + t^5.492 + t^5.582 + t^5.746 + 2*t^5.836 + t^5.927 - t^6. - t^4.149/y - t^4.149*y detail