Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
48146 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_6\phi_1^2$ + $ M_6M_7$ 0.7363 0.9181 0.802 [X:[], M:[0.9094, 0.9094, 0.9094, 0.9094, 0.7282, 1.0906, 0.9094], q:[0.6359, 0.4547], qb:[0.4547, 0.6359], phi:[0.4547]] [X:[], M:[[4, 6, 1], [6, 4, 1], [0, -2, -1], [-2, 0, -1], [6, 6, 0], [-2, -2, 0], [2, 2, 0]], q:[[-6, -6, -1], [2, 0, 0]], qb:[[0, 2, 0], [0, 0, 1]], phi:[[1, 1, 0]]]
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ M_7$, $ \phi_1^2$, $ M_4$, $ M_3$, $ M_2$, $ M_1$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_5^2$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_5M_7$, $ M_5\phi_1^2$, $ M_3M_5$, $ M_4M_5$, $ M_2M_5$, $ M_1M_5$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_2M_3$, $ M_1M_3$, $ M_2M_4$, $ M_7^2$, $ M_7\phi_1^2$, $ \phi_1^4$, $ M_1M_4$, $ M_4^2$, $ M_3^2$, $ M_3M_4$, $ M_3M_7$, $ M_3\phi_1^2$, $ M_4M_7$, $ M_4\phi_1^2$, $ M_2M_7$, $ M_2\phi_1^2$, $ M_1M_7$, $ M_1\phi_1^2$, $ M_2^2$, $ M_1M_2$, $ M_1^2$ . t^2.18 + 6*t^2.73 + 3*t^4.09 + t^4.37 + 4*t^4.64 + 6*t^4.91 + 3*t^5.18 + 17*t^5.46 - 8*t^6. + 3*t^6.28 - 5*t^6.54 + t^6.55 + 18*t^6.82 + 6*t^7.1 + 13*t^7.36 + 17*t^7.64 + 3*t^7.91 + 32*t^8.18 - 7*t^8.45 + 3*t^8.46 - 38*t^8.73 + t^8.74 - t^4.36/y - t^6.55/y - (5*t^7.09)/y + (5*t^7.64)/y + (6*t^7.91)/y + t^8.18/y + (15*t^8.46)/y - t^8.73/y - t^4.36*y - t^6.55*y - 5*t^7.09*y + 5*t^7.64*y + 6*t^7.91*y + t^8.18*y + 15*t^8.46*y - t^8.73*y g1^6*g2^6*t^2.18 + 2*g1^2*g2^2*t^2.73 + t^2.73/(g1^2*g3) + t^2.73/(g2^2*g3) + g1^6*g2^4*g3*t^2.73 + g1^4*g2^6*g3*t^2.73 + g1^5*g2*t^4.09 + g1^3*g2^3*t^4.09 + g1*g2^5*t^4.09 + g1^12*g2^12*t^4.37 + t^4.64/(g1^3*g2^5*g3) + t^4.64/(g1^5*g2^3*g3) + g1^3*g2*g3*t^4.64 + g1*g2^3*g3*t^4.64 + 2*g1^8*g2^8*t^4.91 + (g1^6*g2^4*t^4.91)/g3 + (g1^4*g2^6*t^4.91)/g3 + g1^12*g2^10*g3*t^4.91 + g1^10*g2^12*g3*t^4.91 + t^5.18/(g1^5*g2^5) + t^5.18/(g1^11*g2^11*g3^2) + g1*g2*g3^2*t^5.18 + g1^6*g2^2*t^5.46 + 5*g1^4*g2^4*t^5.46 + g1^2*g2^6*t^5.46 + t^5.46/(g1^4*g3^2) + t^5.46/(g2^4*g3^2) + t^5.46/(g1^2*g2^2*g3^2) + (g1^2*t^5.46)/g3 + (g2^2*t^5.46)/g3 + g1^8*g2^6*g3*t^5.46 + g1^6*g2^8*g3*t^5.46 + g1^12*g2^8*g3^2*t^5.46 + g1^10*g2^10*g3^2*t^5.46 + g1^8*g2^12*g3^2*t^5.46 - 4*t^6. - (g1^2*t^6.)/g2^2 - (g2^2*t^6.)/g1^2 - t^6./(g1^6*g2^6*g3^2) - g1^6*g2^6*g3^2*t^6. + g1^11*g2^7*t^6.28 + g1^9*g2^9*t^6.28 + g1^7*g2^11*t^6.28 - t^6.54/(g1^4*g2^4) - t^6.54/(g1^6*g2^8*g3) - t^6.54/(g1^8*g2^6*g3) - (g3*t^6.54)/g1^2 - (g3*t^6.54)/g2^2 + g1^18*g2^18*t^6.55 + 2*g1^7*g2^3*t^6.82 + 2*g1^5*g2^5*t^6.82 + 2*g1^3*g2^7*t^6.82 + (g1^5*t^6.82)/(g2*g3) + (2*g1^3*g2*t^6.82)/g3 + (2*g1*g2^3*t^6.82)/g3 + (g2^5*t^6.82)/(g1*g3) + g1^11*g2^5*g3*t^6.82 + 2*g1^9*g2^7*g3*t^6.82 + 2*g1^7*g2^9*g3*t^6.82 + g1^5*g2^11*g3*t^6.82 + 2*g1^14*g2^14*t^7.1 + (g1^12*g2^10*t^7.1)/g3 + (g1^10*g2^12*t^7.1)/g3 + g1^18*g2^16*g3*t^7.1 + g1^16*g2^18*g3*t^7.1 + g1*g2*t^7.36 + t^7.36/(g1^3*g2^7*g3^2) + (2*t^7.36)/(g1^5*g2^5*g3^2) + t^7.36/(g1^7*g2^3*g3^2) + t^7.36/(g1*g2^3*g3) + t^7.36/(g1^3*g2*g3) + g1^5*g2^3*g3*t^7.36 + g1^3*g2^5*g3*t^7.36 + g1^9*g2^5*g3^2*t^7.36 + 2*g1^7*g2^7*g3^2*t^7.36 + g1^5*g2^9*g3^2*t^7.36 + g1^12*g2^8*t^7.64 + 5*g1^10*g2^10*t^7.64 + g1^8*g2^12*t^7.64 + (g1^6*g2^2*t^7.64)/g3^2 + (g1^4*g2^4*t^7.64)/g3^2 + (g1^2*g2^6*t^7.64)/g3^2 + (g1^8*g2^6*t^7.64)/g3 + (g1^6*g2^8*t^7.64)/g3 + g1^14*g2^12*g3*t^7.64 + g1^12*g2^14*g3*t^7.64 + g1^18*g2^14*g3^2*t^7.64 + g1^16*g2^16*g3^2*t^7.64 + g1^14*g2^18*g3^2*t^7.64 - t^7.91/(g1*g2^5) - t^7.91/(g1^3*g2^3) - t^7.91/(g1^5*g2) + t^7.91/(g1^11*g2^13*g3^3) + t^7.91/(g1^13*g2^11*g3^3) + t^7.91/(g1^9*g2^9*g3^2) + g1^3*g2^3*g3^2*t^7.91 + g1^7*g2^5*g3^3*t^7.91 + g1^5*g2^7*g3^3*t^7.91 + g1^10*g2^2*t^8.18 + 2*g1^6*g2^6*t^8.18 + g1^2*g2^10*t^8.18 + t^8.18/(g1^6*g3^3) + t^8.18/(g2^6*g3^3) + t^8.18/(g1^2*g2^4*g3^3) + t^8.18/(g1^4*g2^2*g3^3) + (g1^2*t^8.18)/(g2^2*g3^2) + (g2^2*t^8.18)/(g1^2*g3^2) + (g1^6*t^8.18)/g3 + (3*g1^4*g2^2*t^8.18)/g3 + (3*g1^2*g2^4*t^8.18)/g3 + (g2^6*t^8.18)/g3 + g1^12*g2^6*g3*t^8.18 + 3*g1^10*g2^8*g3*t^8.18 + 3*g1^8*g2^10*g3*t^8.18 + g1^6*g2^12*g3*t^8.18 + g1^14*g2^10*g3^2*t^8.18 + g1^10*g2^14*g3^2*t^8.18 + g1^18*g2^12*g3^3*t^8.18 + g1^16*g2^14*g3^3*t^8.18 + g1^14*g2^16*g3^3*t^8.18 + g1^12*g2^18*g3^3*t^8.18 - t^8.45/(g1^7*g2^7) - t^8.45/(g1^13*g2^13*g3^2) - t^8.45/(g1^9*g2^11*g3) - t^8.45/(g1^11*g2^9*g3) - (g3*t^8.45)/(g1^3*g2^5) - (g3*t^8.45)/(g1^5*g2^3) - (g3^2*t^8.45)/(g1*g2) + g1^17*g2^13*t^8.46 + g1^15*g2^15*t^8.46 + g1^13*g2^17*t^8.46 - 2*g1^4*t^8.73 - 8*g1^2*g2^2*t^8.73 - 2*g2^4*t^8.73 - t^8.73/(g1^6*g2^8*g3^3) - t^8.73/(g1^8*g2^6*g3^3) - t^8.73/(g1^4*g2^4*g3^2) - (5*t^8.73)/(g1^2*g3) - (5*t^8.73)/(g2^2*g3) - 5*g1^6*g2^4*g3*t^8.73 - 5*g1^4*g2^6*g3*t^8.73 - g1^8*g2^8*g3^2*t^8.73 - g1^12*g2^10*g3^3*t^8.73 - g1^10*g2^12*g3^3*t^8.73 + g1^24*g2^24*t^8.74 - (g1*g2*t^4.36)/y - (g1^7*g2^7*t^6.55)/y - (g1^3*g2^3*t^7.09)/y - (g1*t^7.09)/(g2*g3*y) - (g2*t^7.09)/(g1*g3*y) - (g1^7*g2^5*g3*t^7.09)/y - (g1^5*g2^7*g3*t^7.09)/y + t^7.64/(g1*g2*y) + t^7.64/(g1^3*g2^5*g3*y) + t^7.64/(g1^5*g2^3*g3*y) + (g1^3*g2*g3*t^7.64)/y + (g1*g2^3*g3*t^7.64)/y + (2*g1^8*g2^8*t^7.91)/y + (g1^6*g2^4*t^7.91)/(g3*y) + (g1^4*g2^6*t^7.91)/(g3*y) + (g1^12*g2^10*g3*t^7.91)/y + (g1^10*g2^12*g3*t^7.91)/y + t^8.18/(g1^5*g2^5*y) + (g1^6*g2^2*t^8.46)/y + (3*g1^4*g2^4*t^8.46)/y + (g1^2*g2^6*t^8.46)/y + t^8.46/(g1^2*g2^2*g3^2*y) + (2*g1^2*t^8.46)/(g3*y) + (2*g2^2*t^8.46)/(g3*y) + (2*g1^8*g2^6*g3*t^8.46)/y + (2*g1^6*g2^8*g3*t^8.46)/y + (g1^10*g2^10*g3^2*t^8.46)/y - (g1^13*g2^13*t^8.73)/y - g1*g2*t^4.36*y - g1^7*g2^7*t^6.55*y - g1^3*g2^3*t^7.09*y - (g1*t^7.09*y)/(g2*g3) - (g2*t^7.09*y)/(g1*g3) - g1^7*g2^5*g3*t^7.09*y - g1^5*g2^7*g3*t^7.09*y + (t^7.64*y)/(g1*g2) + (t^7.64*y)/(g1^3*g2^5*g3) + (t^7.64*y)/(g1^5*g2^3*g3) + g1^3*g2*g3*t^7.64*y + g1*g2^3*g3*t^7.64*y + 2*g1^8*g2^8*t^7.91*y + (g1^6*g2^4*t^7.91*y)/g3 + (g1^4*g2^6*t^7.91*y)/g3 + g1^12*g2^10*g3*t^7.91*y + g1^10*g2^12*g3*t^7.91*y + (t^8.18*y)/(g1^5*g2^5) + g1^6*g2^2*t^8.46*y + 3*g1^4*g2^4*t^8.46*y + g1^2*g2^6*t^8.46*y + (t^8.46*y)/(g1^2*g2^2*g3^2) + (2*g1^2*t^8.46*y)/g3 + (2*g2^2*t^8.46*y)/g3 + 2*g1^8*g2^6*g3*t^8.46*y + 2*g1^6*g2^8*g3*t^8.46*y + g1^10*g2^10*g3^2*t^8.46*y - g1^13*g2^13*t^8.73*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46403 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_6\phi_1^2$ 0.7284 0.9028 0.8068 [X:[], M:[0.9169, 0.9169, 0.9169, 0.9169, 0.7506, 1.0831], q:[0.6247, 0.4584], qb:[0.4584, 0.6247], phi:[0.4584]] t^2.25 + 5*t^2.75 + t^3.25 + 3*t^4.13 + t^4.5 + 4*t^4.62 + 5*t^5. + 3*t^5.12 + 12*t^5.5 - 3*t^6. - t^4.38/y - t^4.38*y detail