Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1287 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1^2\tilde{q}_1\tilde{q}_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_2$ + $ M_4q_2\tilde{q}_1$ + $ M_1M_4$ + $ M_4M_5$ + $ M_6\tilde{q}_1\tilde{q}_2$ + $ M_7q_1\tilde{q}_2$ 0.7363 0.9181 0.802 [X:[], M:[0.9094, 0.9094, 0.9094, 1.0906, 0.9094, 0.9094, 0.7282], q:[0.6359, 0.4547], qb:[0.4547, 0.6359], phi:[0.4547]] [X:[], M:[[-2, -2], [-8, -4], [4, 0], [2, 2], [-2, -2], [-2, -2], [-6, -6]], q:[[6, 4], [-4, -2]], qb:[[2, 0], [0, 2]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_7$, $ M_3$, $ M_2$, $ M_1$, $ M_5$, $ M_6$, $ \phi_1^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_7^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_1q_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ M_2M_7$, $ M_1M_7$, $ M_5M_7$, $ M_6M_7$, $ M_7\phi_1^2$, $ M_3M_7$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1^2$, $ M_3^2$, $ M_2^2$, $ M_1M_2$, $ M_2M_5$, $ M_2M_6$, $ M_2\phi_1^2$, $ M_1^2$, $ M_2M_3$, $ M_1M_5$, $ M_5^2$, $ M_1M_6$, $ M_5M_6$, $ M_6^2$, $ M_1\phi_1^2$, $ M_5\phi_1^2$, $ M_6\phi_1^2$, $ \phi_1^4$, $ M_1M_3$, $ M_3M_5$, $ M_3M_6$, $ M_3\phi_1^2$ . -8 t^2.18 + 6*t^2.73 + 3*t^4.09 + t^4.37 + 4*t^4.64 + 6*t^4.91 + 3*t^5.18 + 17*t^5.46 - 8*t^6. + 3*t^6.28 - 5*t^6.54 + t^6.55 + 18*t^6.82 + 6*t^7.1 + 13*t^7.36 + 17*t^7.64 + 3*t^7.91 + 32*t^8.18 - 7*t^8.45 + 3*t^8.46 - 38*t^8.73 + t^8.74 - t^4.36/y - t^6.55/y - (5*t^7.09)/y + (5*t^7.64)/y + (6*t^7.91)/y + t^8.18/y + (15*t^8.46)/y - t^8.73/y - t^4.36*y - t^6.55*y - 5*t^7.09*y + 5*t^7.64*y + 6*t^7.91*y + t^8.18*y + 15*t^8.46*y - t^8.73*y t^2.18/(g1^6*g2^6) + g1^4*t^2.73 + t^2.73/(g1^8*g2^4) + (4*t^2.73)/(g1^2*g2^2) + t^4.09/(g1^9*g2^5) + t^4.09/(g1^3*g2^3) + (g1^3*t^4.09)/g2 + t^4.37/(g1^12*g2^12) + t^4.64/(g1^5*g2) + 2*g1*g2*t^4.64 + g1^7*g2^3*t^4.64 + t^4.91/(g1^14*g2^10) + (4*t^4.91)/(g1^8*g2^8) + t^4.91/(g1^2*g2^6) + (g2^3*t^5.18)/g1 + g1^5*g2^5*t^5.18 + g1^11*g2^7*t^5.18 + g1^8*t^5.46 + t^5.46/(g1^16*g2^8) + (3*t^5.46)/(g1^10*g2^6) + (9*t^5.46)/(g1^4*g2^4) + (3*g1^2*t^5.46)/g2^2 - 4*t^6. - (2*t^6.)/(g1^6*g2^2) - 2*g1^6*g2^2*t^6. + t^6.28/(g1^15*g2^11) + t^6.28/(g1^9*g2^9) + t^6.28/(g1^3*g2^7) - (g2^2*t^6.54)/g1^2 - 3*g1^4*g2^4*t^6.54 - g1^10*g2^6*t^6.54 + t^6.55/(g1^18*g2^18) + t^6.82/(g1^17*g2^9) + (5*t^6.82)/(g1^11*g2^7) + (6*t^6.82)/(g1^5*g2^5) + (5*g1*t^6.82)/g2^3 + (g1^7*t^6.82)/g2 + t^7.1/(g1^20*g2^16) + (4*t^7.1)/(g1^14*g2^14) + t^7.1/(g1^8*g2^12) + t^7.36/(g1^13*g2^5) + (3*t^7.36)/(g1^7*g2^3) + (5*t^7.36)/(g1*g2) + 3*g1^5*g2*t^7.36 + g1^11*g2^3*t^7.36 + t^7.64/(g1^22*g2^14) + (3*t^7.64)/(g1^16*g2^12) + (9*t^7.64)/(g1^10*g2^10) + (3*t^7.64)/(g1^4*g2^8) + (g1^2*t^7.64)/g2^6 + t^7.91/(g1^9*g2) + (g2*t^7.91)/g1^3 - g1^3*g2^3*t^7.91 + g1^9*g2^5*t^7.91 + g1^15*g2^7*t^7.91 + g1^12*t^8.18 + t^8.18/(g1^24*g2^12) + (4*t^8.18)/(g1^18*g2^10) + (5*t^8.18)/(g1^12*g2^8) + (12*t^8.18)/(g1^6*g2^6) + (5*t^8.18)/g2^4 + (4*g1^6*t^8.18)/g2^2 - 2*g1*g2^5*t^8.45 - 3*g1^7*g2^7*t^8.45 - 2*g1^13*g2^9*t^8.45 + t^8.46/(g1^21*g2^17) + t^8.46/(g1^15*g2^15) + t^8.46/(g1^9*g2^13) - 9*g1^4*t^8.73 - t^8.73/(g1^14*g2^6) - (9*t^8.73)/(g1^8*g2^4) - (18*t^8.73)/(g1^2*g2^2) - g1^10*g2^2*t^8.73 + t^8.74/(g1^24*g2^24) - t^4.36/(g1*g2*y) - t^6.55/(g1^7*g2^7*y) - t^7.09/(g1^9*g2^5*y) - (3*t^7.09)/(g1^3*g2^3*y) - (g1^3*t^7.09)/(g2*y) + t^7.64/(g1^5*g2*y) + (3*g1*g2*t^7.64)/y + (g1^7*g2^3*t^7.64)/y + t^7.91/(g1^14*g2^10*y) + (4*t^7.91)/(g1^8*g2^8*y) + t^7.91/(g1^2*g2^6*y) + (g1^5*g2^5*t^8.18)/y + (4*t^8.46)/(g1^10*g2^6*y) + (7*t^8.46)/(g1^4*g2^4*y) + (4*g1^2*t^8.46)/(g2^2*y) - t^8.73/(g1^13*g2^13*y) - (t^4.36*y)/(g1*g2) - (t^6.55*y)/(g1^7*g2^7) - (t^7.09*y)/(g1^9*g2^5) - (3*t^7.09*y)/(g1^3*g2^3) - (g1^3*t^7.09*y)/g2 + (t^7.64*y)/(g1^5*g2) + 3*g1*g2*t^7.64*y + g1^7*g2^3*t^7.64*y + (t^7.91*y)/(g1^14*g2^10) + (4*t^7.91*y)/(g1^8*g2^8) + (t^7.91*y)/(g1^2*g2^6) + g1^5*g2^5*t^8.18*y + (4*t^8.46*y)/(g1^10*g2^6) + (7*t^8.46*y)/(g1^4*g2^4) + (4*g1^2*t^8.46*y)/g2^2 - (t^8.73*y)/(g1^13*g2^13)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
807 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1^2\tilde{q}_1\tilde{q}_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_2$ + $ M_4q_2\tilde{q}_1$ + $ M_1M_4$ + $ M_4M_5$ + $ M_6\tilde{q}_1\tilde{q}_2$ 0.7171 0.8807 0.8142 [X:[], M:[0.9214, 0.9214, 0.9214, 1.0786, 0.9214, 0.9214], q:[0.6179, 0.4607], qb:[0.4607, 0.6179], phi:[0.4607]] 6*t^2.76 + t^3.71 + 3*t^4.15 + 4*t^4.62 + 3*t^5.09 + 17*t^5.53 - 8*t^6. - t^4.38/y - t^4.38*y detail