Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
47207 | SU2adj1nf2 | $\phi_1q_1^2$ + $ \phi_1^4$ + $ M_1q_2\tilde{q}_2$ + $ M_2\phi_1\tilde{q}_1^2$ + $ M_3q_1q_2$ + $ M_4q_2\tilde{q}_1$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ | 0.6503 | 0.8327 | 0.7809 | [X:[], M:[1.0968, 0.8063, 0.7905, 1.1937, 0.6937], q:[0.75, 0.4595], qb:[0.3468, 0.4437], phi:[0.5]] | [X:[], M:[[1], [-2], [3], [2], [2]], q:[[0], [-3]], qb:[[1], [2]], phi:[[0]]] | 1 | {a: 24639/37888, c: 31551/37888, M1: 487/444, M2: 179/222, M3: 117/148, M4: 265/222, M5: 77/111, q1: 3/4, q2: 17/37, qb1: 77/222, qb2: 197/444, phi1: 1/2} |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_5$, $ M_3$, $ \tilde{q}_1\tilde{q}_2$, $ M_2$, $ \phi_1^2$, $ M_1$, $ q_1\tilde{q}_1$, $ M_4$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_5^2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2^2$, $ M_3M_5$, $ M_5\tilde{q}_1\tilde{q}_2$, $ M_2M_5$, $ M_3^2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_2M_3$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_2^2$, $ M_5\phi_1^2$, $ M_1M_5$, $ M_3\phi_1^2$, $ M_5q_1\tilde{q}_1$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_2\phi_1^2$, $ M_1M_3$, $ M_4M_5$, $ M_3q_1\tilde{q}_1$, $ M_5q_1\tilde{q}_2$, $ q_1\tilde{q}_1^2\tilde{q}_2$, $ M_1M_2$, $ M_2q_1\tilde{q}_1$, $ M_3M_4$, $ M_3q_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_5\phi_1\tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_1\tilde{q}_2^2$ | $M_2q_1\tilde{q}_2$ | -1 | t^2.08 + 2*t^2.37 + t^2.42 + t^3. + 2*t^3.29 + 2*t^3.58 + t^3.87 + 2*t^4.16 + t^4.21 + t^4.26 + 2*t^4.45 + t^4.5 + 3*t^4.74 + 2*t^4.79 + t^4.84 + t^5.08 + 4*t^5.37 + t^5.42 + 5*t^5.66 + t^5.71 + 4*t^5.95 - t^6. - t^6.05 + 4*t^6.24 + t^6.29 + 4*t^6.53 + 6*t^6.58 + t^6.63 + t^6.68 + 3*t^6.82 + 5*t^6.87 - t^6.92 + 4*t^7.11 + 7*t^7.16 - t^7.21 + t^7.26 + 6*t^7.45 - t^7.5 + 10*t^7.74 + t^7.79 + 9*t^8.03 - t^8.08 - t^8.13 + 9*t^8.32 - t^8.37 - 2*t^8.42 + t^8.51 + 7*t^8.61 + 5*t^8.66 - 2*t^8.71 + 6*t^8.91 + 11*t^8.95 - t^4.5/y - t^6.58/y - t^6.87/y + t^7.21/y + (2*t^7.45)/y + t^7.5/y + t^7.74/y + t^7.79/y + t^8.08/y + t^8.13/y + (4*t^8.37)/y + (2*t^8.42)/y + (5*t^8.66)/y + (2*t^8.71)/y + (4*t^8.95)/y - t^4.5*y - t^6.58*y - t^6.87*y + t^7.21*y + 2*t^7.45*y + t^7.5*y + t^7.74*y + t^7.79*y + t^8.08*y + t^8.13*y + 4*t^8.37*y + 2*t^8.42*y + 5*t^8.66*y + 2*t^8.71*y + 4*t^8.95*y | g1^2*t^2.08 + 2*g1^3*t^2.37 + t^2.42/g1^2 + t^3. + 2*g1*t^3.29 + 2*g1^2*t^3.58 + g1^3*t^3.87 + 2*g1^4*t^4.16 + t^4.21/g1 + t^4.26/g1^6 + 2*g1^5*t^4.45 + t^4.5 + 3*g1^6*t^4.74 + 2*g1*t^4.79 + t^4.84/g1^4 + g1^2*t^5.08 + 4*g1^3*t^5.37 + t^5.42/g1^2 + 5*g1^4*t^5.66 + t^5.71/g1 + 4*g1^5*t^5.95 - t^6. - t^6.05/g1^5 + 4*g1^6*t^6.24 + g1*t^6.29 + 4*g1^7*t^6.53 + 6*g1^2*t^6.58 + t^6.63/g1^3 + t^6.68/g1^8 + 3*g1^8*t^6.82 + 5*g1^3*t^6.87 - t^6.92/g1^2 + 4*g1^9*t^7.11 + 7*g1^4*t^7.16 - t^7.21/g1 + t^7.26/g1^6 + 6*g1^5*t^7.45 - t^7.5 + 10*g1^6*t^7.74 + g1*t^7.79 + 9*g1^7*t^8.03 - g1^2*t^8.08 - t^8.13/g1^3 + 9*g1^8*t^8.32 - g1^3*t^8.37 - (2*t^8.42)/g1^2 + t^8.51/g1^12 + 7*g1^9*t^8.61 + 5*g1^4*t^8.66 - (2*t^8.71)/g1 + 6*g1^10*t^8.91 + 11*g1^5*t^8.95 - t^4.5/y - (g1^2*t^6.58)/y - (g1^3*t^6.87)/y + t^7.21/(g1*y) + (2*g1^5*t^7.45)/y + t^7.5/y + (g1^6*t^7.74)/y + (g1*t^7.79)/y + (g1^2*t^8.08)/y + t^8.13/(g1^3*y) + (4*g1^3*t^8.37)/y + (2*t^8.42)/(g1^2*y) + (5*g1^4*t^8.66)/y + (2*t^8.71)/(g1*y) + (4*g1^5*t^8.95)/y - t^4.5*y - g1^2*t^6.58*y - g1^3*t^6.87*y + (t^7.21*y)/g1 + 2*g1^5*t^7.45*y + t^7.5*y + g1^6*t^7.74*y + g1*t^7.79*y + g1^2*t^8.08*y + (t^8.13*y)/g1^3 + 4*g1^3*t^8.37*y + (2*t^8.42*y)/g1^2 + 5*g1^4*t^8.66*y + (2*t^8.71*y)/g1 + 4*g1^5*t^8.95*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46402 | SU2adj1nf2 | $\phi_1q_1^2$ + $ \phi_1^4$ + $ M_1q_2\tilde{q}_2$ + $ M_2\phi_1\tilde{q}_1^2$ + $ M_3q_1q_2$ + $ M_4q_2\tilde{q}_1$ + $ M_2M_4$ | 0.6297 | 0.7927 | 0.7943 | [X:[], M:[1.0978, 0.8043, 0.7935, 1.1957], q:[0.75, 0.4565], qb:[0.3478, 0.4457], phi:[0.5]] | 2*t^2.38 + t^2.41 + t^3. + 2*t^3.29 + 2*t^3.59 + t^3.88 + t^3.91 + t^4.17 + t^4.21 + t^4.24 + 3*t^4.76 + 2*t^4.79 + t^4.83 + 2*t^5.38 + t^5.41 + 3*t^5.67 + t^5.71 + 3*t^5.97 - t^6. - t^4.5/y - t^4.5*y | detail |