Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1837 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{4}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{5}q_{1}q_{2}$ 0.6503 0.8327 0.7809 [M:[1.1937, 1.0968, 0.8063, 0.6937, 0.7905], q:[0.75, 0.4595], qb:[0.3468, 0.4437], phi:[0.5]] [M:[[2], [1], [-2], [2], [3]], q:[[0], [-3]], qb:[[1], [2]], phi:[[0]]] 1 {a: 24639/37888, c: 31551/37888, M1: 265/222, M2: 487/444, M3: 179/222, M4: 77/111, M5: 117/148, q1: 3/4, q2: 17/37, qb1: 77/222, qb2: 197/444, phi1: 1/2}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{5}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }M_{5}^{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{2}M_{5}$, ${ }M_{5}q_{1}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{5}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ ${}M_{3}q_{1}\tilde{q}_{2}$ -1 t^2.081 + 2*t^2.372 + t^2.419 + t^3. + 2*t^3.291 + 2*t^3.581 + t^3.872 + 2*t^4.162 + t^4.209 + t^4.257 + 2*t^4.453 + t^4.5 + 3*t^4.743 + 2*t^4.791 + t^4.838 + t^5.081 + 4*t^5.372 + t^5.419 + 5*t^5.662 + t^5.709 + 4*t^5.953 - t^6. - t^6.047 + 4*t^6.243 + t^6.291 + 4*t^6.534 + 6*t^6.581 + t^6.628 + t^6.676 + 3*t^6.824 + 5*t^6.872 - t^6.919 + 4*t^7.115 + 7*t^7.162 - t^7.209 + t^7.257 + 6*t^7.453 - t^7.5 + 10*t^7.743 + t^7.791 + 9*t^8.034 - t^8.081 - t^8.128 + 9*t^8.324 - t^8.372 - 2*t^8.419 + t^8.514 + 7*t^8.615 + 5*t^8.662 - 2*t^8.709 + 6*t^8.905 + 11*t^8.953 - t^4.5/y - t^6.581/y - t^6.872/y + t^7.209/y + (2*t^7.453)/y + t^7.5/y + t^7.743/y + t^7.791/y + t^8.081/y + t^8.128/y + (4*t^8.372)/y + (2*t^8.419)/y + (5*t^8.662)/y + (2*t^8.709)/y + (4*t^8.953)/y - t^4.5*y - t^6.581*y - t^6.872*y + t^7.209*y + 2*t^7.453*y + t^7.5*y + t^7.743*y + t^7.791*y + t^8.081*y + t^8.128*y + 4*t^8.372*y + 2*t^8.419*y + 5*t^8.662*y + 2*t^8.709*y + 4*t^8.953*y g1^2*t^2.081 + 2*g1^3*t^2.372 + t^2.419/g1^2 + t^3. + 2*g1*t^3.291 + 2*g1^2*t^3.581 + g1^3*t^3.872 + 2*g1^4*t^4.162 + t^4.209/g1 + t^4.257/g1^6 + 2*g1^5*t^4.453 + t^4.5 + 3*g1^6*t^4.743 + 2*g1*t^4.791 + t^4.838/g1^4 + g1^2*t^5.081 + 4*g1^3*t^5.372 + t^5.419/g1^2 + 5*g1^4*t^5.662 + t^5.709/g1 + 4*g1^5*t^5.953 - t^6. - t^6.047/g1^5 + 4*g1^6*t^6.243 + g1*t^6.291 + 4*g1^7*t^6.534 + 6*g1^2*t^6.581 + t^6.628/g1^3 + t^6.676/g1^8 + 3*g1^8*t^6.824 + 5*g1^3*t^6.872 - t^6.919/g1^2 + 4*g1^9*t^7.115 + 7*g1^4*t^7.162 - t^7.209/g1 + t^7.257/g1^6 + 6*g1^5*t^7.453 - t^7.5 + 10*g1^6*t^7.743 + g1*t^7.791 + 9*g1^7*t^8.034 - g1^2*t^8.081 - t^8.128/g1^3 + 9*g1^8*t^8.324 - g1^3*t^8.372 - (2*t^8.419)/g1^2 + t^8.514/g1^12 + 7*g1^9*t^8.615 + 5*g1^4*t^8.662 - (2*t^8.709)/g1 + 6*g1^10*t^8.905 + 11*g1^5*t^8.953 - t^4.5/y - (g1^2*t^6.581)/y - (g1^3*t^6.872)/y + t^7.209/(g1*y) + (2*g1^5*t^7.453)/y + t^7.5/y + (g1^6*t^7.743)/y + (g1*t^7.791)/y + (g1^2*t^8.081)/y + t^8.128/(g1^3*y) + (4*g1^3*t^8.372)/y + (2*t^8.419)/(g1^2*y) + (5*g1^4*t^8.662)/y + (2*t^8.709)/(g1*y) + (4*g1^5*t^8.953)/y - t^4.5*y - g1^2*t^6.581*y - g1^3*t^6.872*y + (t^7.209*y)/g1 + 2*g1^5*t^7.453*y + t^7.5*y + g1^6*t^7.743*y + g1*t^7.791*y + g1^2*t^8.081*y + (t^8.128*y)/g1^3 + 4*g1^3*t^8.372*y + (2*t^8.419*y)/g1^2 + 5*g1^4*t^8.662*y + (2*t^8.709*y)/g1 + 4*g1^5*t^8.953*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
397 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{4}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ 0.6338 0.802 0.7903 [M:[1.2058, 1.1029, 0.7942, 0.7058], q:[0.75, 0.4413], qb:[0.3529, 0.4558], phi:[0.5]] t^2.117 + t^2.383 + t^2.426 + t^3. + 2*t^3.309 + t^3.574 + 2*t^3.617 + t^3.926 + t^4.148 + t^4.191 + 2*t^4.235 + t^4.5 + t^4.543 + t^4.765 + t^4.809 + t^4.852 + t^5.117 + t^5.383 + 3*t^5.426 + 2*t^5.691 + 3*t^5.735 - t^4.5/y - t^4.5*y detail