Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47182 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{2}$ 0.6546 0.8636 0.7581 [M:[0.9622, 0.8239, 0.8085, 1.0378, 0.8865, 0.7329], q:[0.7405, 0.2973], qb:[0.4356, 0.4509], phi:[0.5189]] [M:[[4, 4], [-13, -1], [-1, -13], [-4, -4], [12, 12], [7, -5]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }M_{2}$, ${ }M_{5}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{6}^{2}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{6}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{3}M_{5}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{5}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{5}^{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$ ${}$ -3 2*t^2.199 + t^2.245 + t^2.426 + t^2.472 + 2*t^2.66 + 2*t^3.113 + t^3.755 + t^4.17 + t^4.216 + t^4.262 + 3*t^4.397 + 2*t^4.443 + t^4.489 + 2*t^4.624 + 3*t^4.67 + t^4.716 + t^4.851 + 4*t^4.858 + t^4.897 + 2*t^4.904 + t^4.943 + 2*t^5.085 + 2*t^5.131 + 4*t^5.312 + 3*t^5.319 + 2*t^5.358 + t^5.539 + t^5.585 + 3*t^5.773 + t^5.954 - 3*t^6. - t^6.046 + t^6.181 + 2*t^6.227 + 2*t^6.369 + 3*t^6.415 + t^6.461 + t^6.507 + 5*t^6.596 + 3*t^6.642 + 2*t^6.688 + 2*t^6.734 + 3*t^6.823 + 2*t^6.83 + 5*t^6.869 + 2*t^6.876 + t^6.915 + 2*t^6.922 + t^6.961 + 2*t^7.05 + 5*t^7.057 + 2*t^7.096 + 3*t^7.103 + 2*t^7.142 + t^7.149 + t^7.188 + t^7.277 + 5*t^7.284 + t^7.323 + 5*t^7.33 + t^7.369 + 3*t^7.376 + t^7.415 + 7*t^7.511 + 6*t^7.518 + 2*t^7.557 + 3*t^7.564 + 2*t^7.603 + 2*t^7.738 + 2*t^7.745 + 3*t^7.784 + 2*t^7.791 + t^7.83 + t^7.926 + t^7.965 + 4*t^7.972 + 4*t^7.979 + t^8.018 + t^8.057 + t^8.153 - 6*t^8.199 - 4*t^8.245 - t^8.291 + t^8.341 + t^8.38 + t^8.387 + 5*t^8.433 - 3*t^8.472 + t^8.479 - t^8.518 + t^8.525 + 3*t^8.568 + t^8.607 + 3*t^8.614 - 6*t^8.66 - t^8.706 + t^8.752 + 7*t^8.795 + 5*t^8.841 + 2*t^8.887 + 2*t^8.933 + 2*t^8.978 - t^4.557/y - t^6.755/y - t^6.982/y - t^7.028/y - t^7.216/y + t^7.397/y + (3*t^7.443)/y + (2*t^7.624)/y + (2*t^7.67)/y + t^7.716/y + (4*t^7.858)/y + (2*t^7.897)/y + (2*t^7.904)/y + (3*t^8.085)/y + (3*t^8.131)/y + (4*t^8.312)/y + t^8.319/y + (3*t^8.358)/y + (2*t^8.539)/y + (2*t^8.585)/y + (4*t^8.773)/y + t^8.954/y - t^4.557*y - t^6.755*y - t^6.982*y - t^7.028*y - t^7.216*y + t^7.397*y + 3*t^7.443*y + 2*t^7.624*y + 2*t^7.67*y + t^7.716*y + 4*t^7.858*y + 2*t^7.897*y + 2*t^7.904*y + 3*t^8.085*y + 3*t^8.131*y + 4*t^8.312*y + t^8.319*y + 3*t^8.358*y + 2*t^8.539*y + 2*t^8.585*y + 4*t^8.773*y + t^8.954*y (2*g1^7*t^2.199)/g2^5 + (g2^7*t^2.245)/g1^5 + t^2.426/(g1*g2^13) + t^2.472/(g1^13*g2) + 2*g1^12*g2^12*t^2.66 + (2*t^3.113)/(g1^4*g2^4) + (g1^5*t^3.755)/g2^7 + (g1^22*t^4.17)/g2^2 + g1^10*g2^10*t^4.216 + (g2^22*t^4.262)/g1^2 + (3*g1^14*t^4.397)/g2^10 + 2*g1^2*g2^2*t^4.443 + (g2^14*t^4.489)/g1^10 + (2*g1^6*t^4.624)/g2^18 + (3*t^4.67)/(g1^6*g2^6) + (g2^6*t^4.716)/g1^18 + t^4.851/(g1^2*g2^26) + 4*g1^19*g2^7*t^4.858 + t^4.897/(g1^14*g2^14) + 2*g1^7*g2^19*t^4.904 + t^4.943/(g1^26*g2^2) + (2*g1^11*t^5.085)/g2 + (2*g2^11*t^5.131)/g1 + (4*g1^3*t^5.312)/g2^9 + 3*g1^24*g2^24*t^5.319 + (2*g2^3*t^5.358)/g1^9 + t^5.539/(g1^5*g2^17) + t^5.585/(g1^17*g2^5) + 3*g1^8*g2^8*t^5.773 + (g1^12*t^5.954)/g2^12 - 3*t^6. - (g2^12*t^6.046)/g1^12 + (g1^4*t^6.181)/g2^20 + (2*t^6.227)/(g1^8*g2^8) + (2*g1^29*t^6.369)/g2^7 + 3*g1^17*g2^5*t^6.415 + g1^5*g2^17*t^6.461 + (g2^29*t^6.507)/g1^7 + (5*g1^21*t^6.596)/g2^15 + (3*g1^9*t^6.642)/g2^3 + (2*g2^9*t^6.688)/g1^3 + (2*g2^21*t^6.734)/g1^15 + (3*g1^13*t^6.823)/g2^23 + 2*g1^34*g2^10*t^6.83 + (5*g1*t^6.869)/g2^11 + 2*g1^22*g2^22*t^6.876 + (g2*t^6.915)/g1^11 + 2*g1^10*g2^34*t^6.922 + (g2^13*t^6.961)/g1^23 + (2*g1^5*t^7.05)/g2^31 + 5*g1^26*g2^2*t^7.057 + (2*t^7.096)/(g1^7*g2^19) + 3*g1^14*g2^14*t^7.103 + (2*t^7.142)/(g1^19*g2^7) + g1^2*g2^26*t^7.149 + (g2^5*t^7.188)/g1^31 + t^7.277/(g1^3*g2^39) + (5*g1^18*t^7.284)/g2^6 + t^7.323/(g1^15*g2^27) + 5*g1^6*g2^6*t^7.33 + t^7.369/(g1^27*g2^15) + (3*g2^18*t^7.376)/g1^6 + t^7.415/(g1^39*g2^3) + (7*g1^10*t^7.511)/g2^14 + 6*g1^31*g2^19*t^7.518 + (2*t^7.557)/(g1^2*g2^2) + 3*g1^19*g2^31*t^7.564 + (2*g2^10*t^7.603)/g1^14 + (2*g1^2*t^7.738)/g2^22 + 2*g1^23*g2^11*t^7.745 + (3*t^7.784)/(g1^10*g2^10) + 2*g1^11*g2^23*t^7.791 + (g2^2*t^7.83)/g1^22 + (g1^27*t^7.926)/g2^9 + t^7.965/(g1^6*g2^30) + 4*g1^15*g2^3*t^7.972 + 4*g1^36*g2^36*t^7.979 + g1^3*g2^15*t^8.018 + t^8.057/(g1^30*g2^6) + (g1^19*t^8.153)/g2^17 - (6*g1^7*t^8.199)/g2^5 - (4*g2^7*t^8.245)/g1^5 - (g2^19*t^8.291)/g1^17 + (g1^44*t^8.341)/g2^4 + (g1^11*t^8.38)/g2^25 + g1^32*g2^8*t^8.387 + 5*g1^20*g2^20*t^8.433 - (3*t^8.472)/(g1^13*g2) + g1^8*g2^32*t^8.479 - (g2^11*t^8.518)/g1^25 + (g2^44*t^8.525)/g1^4 + (3*g1^36*t^8.568)/g2^12 + (g1^3*t^8.607)/g2^33 + 3*g1^24*t^8.614 - 6*g1^12*g2^12*t^8.66 - g2^24*t^8.706 + (g2^36*t^8.752)/g1^12 + (7*g1^28*t^8.795)/g2^20 + (5*g1^16*t^8.841)/g2^8 + 2*g1^4*g2^4*t^8.887 + (2*g2^16*t^8.933)/g1^8 + (2*g2^28*t^8.978)/g1^20 - t^4.557/(g1^2*g2^2*y) - (g1^5*t^6.755)/(g2^7*y) - t^6.982/(g1^3*g2^15*y) - t^7.028/(g1^15*g2^3*y) - (g1^10*g2^10*t^7.216)/y + (g1^14*t^7.397)/(g2^10*y) + (3*g1^2*g2^2*t^7.443)/y + (2*g1^6*t^7.624)/(g2^18*y) + (2*t^7.67)/(g1^6*g2^6*y) + (g2^6*t^7.716)/(g1^18*y) + (4*g1^19*g2^7*t^7.858)/y + (2*t^7.897)/(g1^14*g2^14*y) + (2*g1^7*g2^19*t^7.904)/y + (3*g1^11*t^8.085)/(g2*y) + (3*g2^11*t^8.131)/(g1*y) + (4*g1^3*t^8.312)/(g2^9*y) + (g1^24*g2^24*t^8.319)/y + (3*g2^3*t^8.358)/(g1^9*y) + (2*t^8.539)/(g1^5*g2^17*y) + (2*t^8.585)/(g1^17*g2^5*y) + (4*g1^8*g2^8*t^8.773)/y + (g1^12*t^8.954)/(g2^12*y) - (t^4.557*y)/(g1^2*g2^2) - (g1^5*t^6.755*y)/g2^7 - (t^6.982*y)/(g1^3*g2^15) - (t^7.028*y)/(g1^15*g2^3) - g1^10*g2^10*t^7.216*y + (g1^14*t^7.397*y)/g2^10 + 3*g1^2*g2^2*t^7.443*y + (2*g1^6*t^7.624*y)/g2^18 + (2*t^7.67*y)/(g1^6*g2^6) + (g2^6*t^7.716*y)/g1^18 + 4*g1^19*g2^7*t^7.858*y + (2*t^7.897*y)/(g1^14*g2^14) + 2*g1^7*g2^19*t^7.904*y + (3*g1^11*t^8.085*y)/g2 + (3*g2^11*t^8.131*y)/g1 + (4*g1^3*t^8.312*y)/g2^9 + g1^24*g2^24*t^8.319*y + (3*g2^3*t^8.358*y)/g1^9 + (2*t^8.539*y)/(g1^5*g2^17) + (2*t^8.585*y)/(g1^17*g2^5) + 4*g1^8*g2^8*t^8.773*y + (g1^12*t^8.954*y)/g2^12


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
53999 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$ 0.6545 0.863 0.7584 [M:[0.9621, 0.8163, 0.8163, 1.0379, 0.8864, 0.7405], q:[0.7405, 0.2974], qb:[0.4432, 0.4432], phi:[0.5189]] 3*t^2.222 + 2*t^2.449 + 2*t^2.659 + 2*t^3.114 + t^3.778 + 3*t^4.216 + 6*t^4.443 + 6*t^4.67 + 6*t^4.881 + 3*t^4.898 + 4*t^5.108 + 3*t^5.318 + 6*t^5.335 + 2*t^5.563 + 3*t^5.773 - 3*t^6. - t^4.557/y - t^4.557*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46780 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ 0.6351 0.8273 0.7677 [M:[0.9627, 0.8153, 0.8153, 1.0373, 0.888], q:[0.7407, 0.2966], qb:[0.444, 0.444], phi:[0.5187]] 2*t^2.222 + 2*t^2.446 + 2*t^2.664 + 2*t^3.112 + 2*t^3.778 + 3*t^4.22 + 3*t^4.444 + 4*t^4.668 + 4*t^4.886 + 3*t^4.892 + 4*t^5.11 + 3*t^5.328 + 4*t^5.334 + 2*t^5.558 + 3*t^5.776 - 2*t^6. - t^4.556/y - t^4.556*y detail