Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3503 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ + $ M_7q_1\tilde{q}_1$ + $ M_8\phi_1q_2^2$ 0.6546 0.8636 0.7581 [X:[], M:[0.9622, 1.1135, 1.0378, 0.8865, 0.7329, 0.8239, 0.8085, 0.8865], q:[0.7405, 0.2973], qb:[0.4509, 0.4356], phi:[0.5189]] [X:[], M:[[4, 4], [-12, -12], [-4, -4], [12, 12], [-5, 7], [-1, -13], [-13, -1], [12, 12]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ M_7$, $ M_6$, $ M_4$, $ M_8$, $ M_3$, $ \phi_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_5^2$, $ M_5q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_5q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1^2$, $ M_5M_7$, $ M_7q_2\tilde{q}_2$, $ M_5M_6$, $ \phi_1q_1q_2$, $ M_7q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_1$, $ M_7^2$, $ M_4M_5$, $ M_5M_8$, $ M_4q_2\tilde{q}_2$, $ M_8q_2\tilde{q}_2$, $ M_6M_7$, $ M_4q_2\tilde{q}_1$, $ M_8q_2\tilde{q}_1$, $ M_6^2$, $ M_4M_7$, $ M_7M_8$, $ \phi_1q_1\tilde{q}_2$, $ M_4M_6$, $ M_6M_8$, $ \phi_1q_1\tilde{q}_1$, $ M_3M_5$, $ M_5\phi_1^2$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_4^2$, $ M_4M_8$, $ M_8^2$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_3M_7$, $ M_7\phi_1^2$, $ M_3M_6$, $ M_6\phi_1^2$, $ M_3M_4$, $ M_3M_8$, $ M_4\phi_1^2$, $ M_8\phi_1^2$, $ M_5\phi_1q_2\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_2^2$ . -3 2*t^2.2 + t^2.24 + t^2.43 + t^2.47 + 2*t^2.66 + 2*t^3.11 + t^3.76 + t^4.17 + t^4.22 + t^4.26 + 3*t^4.4 + 2*t^4.44 + t^4.49 + 2*t^4.62 + 3*t^4.67 + t^4.72 + t^4.85 + 4*t^4.86 + 3*t^4.9 + t^4.94 + 2*t^5.09 + 2*t^5.13 + 4*t^5.31 + 3*t^5.32 + 2*t^5.36 + t^5.54 + t^5.59 + 3*t^5.77 + t^5.95 - 3*t^6. - t^6.05 + t^6.18 + 2*t^6.23 + 2*t^6.37 + 3*t^6.41 + t^6.46 + t^6.51 + 5*t^6.6 + 3*t^6.64 + 2*t^6.69 + 2*t^6.73 + 3*t^6.82 + 2*t^6.83 + 5*t^6.87 + 2*t^6.88 + t^6.91 + 2*t^6.92 + t^6.96 + 2*t^7.05 + 5*t^7.06 + 5*t^7.1 + 2*t^7.14 + t^7.15 + t^7.19 + 6*t^7.28 + t^7.32 + 5*t^7.33 + t^7.37 + 3*t^7.38 + t^7.41 + 7*t^7.51 + 6*t^7.52 + 5*t^7.56 + 2*t^7.6 + 4*t^7.74 + 3*t^7.78 + 2*t^7.79 + t^7.83 + t^7.93 + t^7.96 + 4*t^7.97 + 4*t^7.98 + t^8.02 + t^8.06 + t^8.15 - 6*t^8.2 - 4*t^8.24 - t^8.29 + t^8.34 + t^8.38 + t^8.39 + 5*t^8.43 - 3*t^8.47 + t^8.48 + 3*t^8.57 + 4*t^8.61 - 6*t^8.66 - t^8.71 + t^8.75 + 7*t^8.79 + 5*t^8.84 + 2*t^8.89 + 2*t^8.93 + 2*t^8.98 - t^4.56/y - t^6.76/y - t^6.98/y - t^7.03/y - t^7.22/y + t^7.4/y + (3*t^7.44)/y + (2*t^7.62)/y + (2*t^7.67)/y + t^7.72/y + (4*t^7.86)/y + (4*t^7.9)/y + (3*t^8.09)/y + (3*t^8.13)/y + (4*t^8.31)/y + t^8.32/y + (3*t^8.36)/y + (2*t^8.54)/y + (2*t^8.59)/y + (4*t^8.77)/y + t^8.95/y - t^4.56*y - t^6.76*y - t^6.98*y - t^7.03*y - t^7.22*y + t^7.4*y + 3*t^7.44*y + 2*t^7.62*y + 2*t^7.67*y + t^7.72*y + 4*t^7.86*y + 4*t^7.9*y + 3*t^8.09*y + 3*t^8.13*y + 4*t^8.31*y + t^8.32*y + 3*t^8.36*y + 2*t^8.54*y + 2*t^8.59*y + 4*t^8.77*y + t^8.95*y (2*g2^7*t^2.2)/g1^5 + (g1^7*t^2.24)/g2^5 + t^2.43/(g1^13*g2) + t^2.47/(g1*g2^13) + 2*g1^12*g2^12*t^2.66 + (2*t^3.11)/(g1^4*g2^4) + (g2^5*t^3.76)/g1^7 + (g2^22*t^4.17)/g1^2 + g1^10*g2^10*t^4.22 + (g1^22*t^4.26)/g2^2 + (3*g2^14*t^4.4)/g1^10 + 2*g1^2*g2^2*t^4.44 + (g1^14*t^4.49)/g2^10 + (2*g2^6*t^4.62)/g1^18 + (3*t^4.67)/(g1^6*g2^6) + (g1^6*t^4.72)/g2^18 + t^4.85/(g1^26*g2^2) + 4*g1^7*g2^19*t^4.86 + t^4.9/(g1^14*g2^14) + 2*g1^19*g2^7*t^4.9 + t^4.94/(g1^2*g2^26) + (2*g2^11*t^5.09)/g1 + (2*g1^11*t^5.13)/g2 + (4*g2^3*t^5.31)/g1^9 + 3*g1^24*g2^24*t^5.32 + (2*g1^3*t^5.36)/g2^9 + t^5.54/(g1^17*g2^5) + t^5.59/(g1^5*g2^17) + 3*g1^8*g2^8*t^5.77 + (g2^12*t^5.95)/g1^12 - 3*t^6. - (g1^12*t^6.05)/g2^12 + (g2^4*t^6.18)/g1^20 + (2*t^6.23)/(g1^8*g2^8) + (2*g2^29*t^6.37)/g1^7 + 3*g1^5*g2^17*t^6.41 + g1^17*g2^5*t^6.46 + (g1^29*t^6.51)/g2^7 + (5*g2^21*t^6.6)/g1^15 + (3*g2^9*t^6.64)/g1^3 + (2*g1^9*t^6.69)/g2^3 + (2*g1^21*t^6.73)/g2^15 + (3*g2^13*t^6.82)/g1^23 + 2*g1^10*g2^34*t^6.83 + (5*g2*t^6.87)/g1^11 + 2*g1^22*g2^22*t^6.88 + (g1*t^6.91)/g2^11 + 2*g1^34*g2^10*t^6.92 + (g1^13*t^6.96)/g2^23 + (2*g2^5*t^7.05)/g1^31 + 5*g1^2*g2^26*t^7.06 + (2*t^7.1)/(g1^19*g2^7) + 3*g1^14*g2^14*t^7.1 + (2*t^7.14)/(g1^7*g2^19) + g1^26*g2^2*t^7.15 + (g1^5*t^7.19)/g2^31 + t^7.28/(g1^39*g2^3) + (5*g2^18*t^7.28)/g1^6 + t^7.32/(g1^27*g2^15) + 5*g1^6*g2^6*t^7.33 + t^7.37/(g1^15*g2^27) + (3*g1^18*t^7.38)/g2^6 + t^7.41/(g1^3*g2^39) + (7*g2^10*t^7.51)/g1^14 + 6*g1^19*g2^31*t^7.52 + (2*t^7.56)/(g1^2*g2^2) + 3*g1^31*g2^19*t^7.56 + (2*g1^10*t^7.6)/g2^14 + (2*g2^2*t^7.74)/g1^22 + 2*g1^11*g2^23*t^7.74 + (3*t^7.78)/(g1^10*g2^10) + 2*g1^23*g2^11*t^7.79 + (g1^2*t^7.83)/g2^22 + (g2^27*t^7.93)/g1^9 + t^7.96/(g1^30*g2^6) + 4*g1^3*g2^15*t^7.97 + 4*g1^36*g2^36*t^7.98 + g1^15*g2^3*t^8.02 + t^8.06/(g1^6*g2^30) + (g2^19*t^8.15)/g1^17 - (6*g2^7*t^8.2)/g1^5 - (4*g1^7*t^8.24)/g2^5 - (g1^19*t^8.29)/g2^17 + (g2^44*t^8.34)/g1^4 + (g2^11*t^8.38)/g1^25 + g1^8*g2^32*t^8.39 + 5*g1^20*g2^20*t^8.43 - (3*t^8.47)/(g1*g2^13) + g1^32*g2^8*t^8.48 - (g1^11*t^8.52)/g2^25 + (g1^44*t^8.52)/g2^4 + (3*g2^36*t^8.57)/g1^12 + (g2^3*t^8.61)/g1^33 + 3*g2^24*t^8.61 - 6*g1^12*g2^12*t^8.66 - g1^24*t^8.71 + (g1^36*t^8.75)/g2^12 + (7*g2^28*t^8.79)/g1^20 + (5*g2^16*t^8.84)/g1^8 + 2*g1^4*g2^4*t^8.89 + (2*g1^16*t^8.93)/g2^8 + (2*g1^28*t^8.98)/g2^20 - t^4.56/(g1^2*g2^2*y) - (g2^5*t^6.76)/(g1^7*y) - t^6.98/(g1^15*g2^3*y) - t^7.03/(g1^3*g2^15*y) - (g1^10*g2^10*t^7.22)/y + (g2^14*t^7.4)/(g1^10*y) + (3*g1^2*g2^2*t^7.44)/y + (2*g2^6*t^7.62)/(g1^18*y) + (2*t^7.67)/(g1^6*g2^6*y) + (g1^6*t^7.72)/(g2^18*y) + (4*g1^7*g2^19*t^7.86)/y + (2*t^7.9)/(g1^14*g2^14*y) + (2*g1^19*g2^7*t^7.9)/y + (3*g2^11*t^8.09)/(g1*y) + (3*g1^11*t^8.13)/(g2*y) + (4*g2^3*t^8.31)/(g1^9*y) + (g1^24*g2^24*t^8.32)/y + (3*g1^3*t^8.36)/(g2^9*y) + (2*t^8.54)/(g1^17*g2^5*y) + (2*t^8.59)/(g1^5*g2^17*y) + (4*g1^8*g2^8*t^8.77)/y + (g2^12*t^8.95)/(g1^12*y) - (t^4.56*y)/(g1^2*g2^2) - (g2^5*t^6.76*y)/g1^7 - (t^6.98*y)/(g1^15*g2^3) - (t^7.03*y)/(g1^3*g2^15) - g1^10*g2^10*t^7.22*y + (g2^14*t^7.4*y)/g1^10 + 3*g1^2*g2^2*t^7.44*y + (2*g2^6*t^7.62*y)/g1^18 + (2*t^7.67*y)/(g1^6*g2^6) + (g1^6*t^7.72*y)/g2^18 + 4*g1^7*g2^19*t^7.86*y + (2*t^7.9*y)/(g1^14*g2^14) + 2*g1^19*g2^7*t^7.9*y + (3*g2^11*t^8.09*y)/g1 + (3*g1^11*t^8.13*y)/g2 + (4*g2^3*t^8.31*y)/g1^9 + g1^24*g2^24*t^8.32*y + (3*g1^3*t^8.36*y)/g2^9 + (2*t^8.54*y)/(g1^17*g2^5) + (2*t^8.59*y)/(g1^5*g2^17) + 4*g1^8*g2^8*t^8.77*y + (g2^12*t^8.95*y)/g1^12


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2917 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ + $ M_7q_1\tilde{q}_1$ 0.6465 0.8492 0.7613 [X:[], M:[0.979, 1.063, 1.021, 0.937, 0.7366, 0.7949, 0.7786], q:[0.7448, 0.2762], qb:[0.4767, 0.4603], phi:[0.5105]] 2*t^2.21 + t^2.26 + t^2.34 + t^2.38 + t^2.81 + 2*t^3.06 + t^3.19 + t^3.74 + t^4.29 + t^4.34 + t^4.39 + 3*t^4.42 + 2*t^4.47 + t^4.52 + 2*t^4.55 + 3*t^4.59 + t^4.64 + t^4.67 + t^4.72 + t^4.77 + 2*t^5.02 + t^5.07 + t^5.15 + t^5.2 + 4*t^5.27 + 2*t^5.32 + 3*t^5.4 + 2*t^5.45 + t^5.52 + t^5.57 + t^5.62 + t^5.87 + t^5.95 - 2*t^6. - t^4.53/y - t^4.53*y detail