Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
47061 | SU2adj1nf2 | $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6\phi_1^2$ | 0.6491 | 0.8532 | 0.7608 | [X:[], M:[1.0, 0.9045, 0.6874, 0.7409, 0.7352, 1.0477], q:[0.7619, 0.2381], qb:[0.5506, 0.5449], phi:[0.4761]] | [X:[], M:[[0, 0], [-8, -8], [-9, -1], [3, -5], [-5, 3], [4, 4]], q:[[1, 1], [-1, -1]], qb:[[8, 0], [0, 8]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_3$, $ M_5$, $ M_4$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ M_2$, $ \phi_1q_2^2$, $ M_1$, $ M_6$, $ q_1\tilde{q}_2$, $ M_3^2$, $ M_3M_5$, $ M_3M_4$, $ M_5^2$, $ M_3q_2\tilde{q}_2$, $ M_4M_5$, $ \phi_1q_1q_2$, $ M_3q_2\tilde{q}_1$, $ M_4^2$, $ M_5q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ M_2M_3$, $ M_2M_5$, $ M_3\phi_1q_2^2$, $ M_2M_4$, $ M_1M_3$, $ M_5\phi_1q_2^2$, $ M_4\phi_1q_2^2$, $ M_1M_5$, $ M_3M_6$, $ \phi_1q_2^3\tilde{q}_2$, $ M_1M_4$, $ \phi_1q_2^3\tilde{q}_1$, $ M_5M_6$, $ \phi_1q_1\tilde{q}_2$, $ M_4M_6$, $ \phi_1q_1\tilde{q}_1$, $ M_2^2$, $ M_6q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_1$, $ M_2\phi_1q_2^2$, $ M_1M_2$, $ \phi_1^2q_2^4$, $ M_2M_6$ | $M_6\phi_1q_2^2$ | -2 | t^2.06 + t^2.21 + t^2.22 + t^2.35 + t^2.37 + t^2.71 + t^2.86 + t^3. + t^3.14 + t^3.92 + t^4.12 + t^4.27 + t^4.29 + 2*t^4.41 + 2*t^4.43 + t^4.45 + t^4.55 + 2*t^4.57 + t^4.59 + 2*t^4.7 + 2*t^4.71 + 2*t^4.73 + t^4.78 + 2*t^4.92 + t^4.94 + 2*t^5.06 + t^5.08 + 3*t^5.21 + 2*t^5.22 + 2*t^5.35 + 2*t^5.37 + t^5.43 + t^5.49 + t^5.51 + t^5.57 + 2*t^5.71 + t^5.86 - 2*t^6. - t^6.02 + t^6.13 + t^6.14 + t^6.19 + t^6.27 + t^6.29 + t^6.33 + t^6.35 + 2*t^6.47 + t^6.49 + 2*t^6.62 + 3*t^6.63 + t^6.65 + t^6.67 + 3*t^6.76 + 3*t^6.78 + 2*t^6.79 + t^6.81 + t^6.84 + 2*t^6.9 + 3*t^6.92 + 2*t^6.94 + 2*t^6.95 + 2*t^6.98 + t^7. + 2*t^7.05 + 3*t^7.06 + 2*t^7.08 + 2*t^7.1 + 3*t^7.12 + 2*t^7.14 + t^7.16 + 4*t^7.27 + 3*t^7.29 + t^7.3 + 4*t^7.41 + 3*t^7.43 + 2*t^7.45 + t^7.49 + 4*t^7.55 + 3*t^7.57 + 3*t^7.59 + 2*t^7.63 + t^7.65 + 2*t^7.7 + 2*t^7.71 + 2*t^7.73 + 3*t^7.78 + t^7.79 + 2*t^7.84 + t^7.86 + t^7.88 + 3*t^7.92 + 2*t^7.94 + t^8.08 + t^8.14 - 2*t^8.21 - 3*t^8.22 - t^8.24 + t^8.25 + t^8.28 + t^8.33 - 2*t^8.35 - 3*t^8.37 - t^8.38 + t^8.39 + t^8.41 + 2*t^8.43 + t^8.47 - t^8.51 + 2*t^8.54 + t^8.55 + 2*t^8.57 + 2*t^8.62 + t^8.64 + t^8.65 + 2*t^8.68 + 2*t^8.7 - 2*t^8.71 + 4*t^8.82 + 3*t^8.84 - t^8.86 + t^8.89 + t^8.9 + 3*t^8.97 + 3*t^8.98 - t^4.43/y - t^6.49/y - t^6.63/y - t^6.65/y - t^7.14/y + t^7.27/y + t^7.29/y + t^7.41/y + (2*t^7.43)/y + t^7.55/y + (2*t^7.57)/y + t^7.59/y + (2*t^7.71)/y + t^7.78/y + (2*t^7.92)/y + t^7.94/y + (3*t^8.06)/y + (2*t^8.08)/y + (4*t^8.21)/y + (3*t^8.22)/y + (2*t^8.35)/y + (3*t^8.37)/y + t^8.49/y + t^8.51/y - t^8.55/y + t^8.57/y - t^8.7/y - t^8.84/y + t^8.86/y - t^8.87/y + t^8.98/y - t^4.43*y - t^6.49*y - t^6.63*y - t^6.65*y - t^7.14*y + t^7.27*y + t^7.29*y + t^7.41*y + 2*t^7.43*y + t^7.55*y + 2*t^7.57*y + t^7.59*y + 2*t^7.71*y + t^7.78*y + 2*t^7.92*y + t^7.94*y + 3*t^8.06*y + 2*t^8.08*y + 4*t^8.21*y + 3*t^8.22*y + 2*t^8.35*y + 3*t^8.37*y + t^8.49*y + t^8.51*y - t^8.55*y + t^8.57*y - t^8.7*y - t^8.84*y + t^8.86*y - t^8.87*y + t^8.98*y | t^2.06/(g1^9*g2) + (g2^3*t^2.21)/g1^5 + (g1^3*t^2.22)/g2^5 + (g2^7*t^2.35)/g1 + (g1^7*t^2.37)/g2 + t^2.71/(g1^8*g2^8) + t^2.86/(g1^4*g2^4) + t^3. + g1^4*g2^4*t^3.14 + g1*g2^9*t^3.92 + t^4.12/(g1^18*g2^2) + (g2^2*t^4.27)/g1^14 + t^4.29/(g1^6*g2^6) + (2*g2^6*t^4.41)/g1^10 + (2*t^4.43)/(g1^2*g2^2) + (g1^6*t^4.45)/g2^10 + (g2^10*t^4.55)/g1^6 + 2*g1^2*g2^2*t^4.57 + (g1^10*t^4.59)/g2^6 + (2*g2^14*t^4.7)/g1^2 + 2*g1^6*g2^6*t^4.71 + (2*g1^14*t^4.73)/g2^2 + t^4.78/(g1^17*g2^9) + (2*t^4.92)/(g1^13*g2^5) + t^4.94/(g1^5*g2^13) + (2*t^5.06)/(g1^9*g2) + t^5.08/(g1*g2^9) + (3*g2^3*t^5.21)/g1^5 + (2*g1^3*t^5.22)/g2^5 + (2*g2^7*t^5.35)/g1 + (2*g1^7*t^5.37)/g2 + t^5.43/(g1^16*g2^16) + g1^3*g2^11*t^5.49 + g1^11*g2^3*t^5.51 + t^5.57/(g1^12*g2^12) + (2*t^5.71)/(g1^8*g2^8) + t^5.86/(g1^4*g2^4) - 2*t^6. - (g1^8*t^6.02)/g2^8 + (g2^12*t^6.13)/g1^4 + g1^4*g2^4*t^6.14 + t^6.19/(g1^27*g2^3) + g2^16*t^6.27 + g1^8*g2^8*t^6.29 + (g2*t^6.33)/g1^23 + t^6.35/(g1^15*g2^7) + (2*g2^5*t^6.47)/g1^19 + t^6.49/(g1^11*g2^3) + (2*g2^9*t^6.62)/g1^15 + (3*g2*t^6.63)/g1^7 + (g1*t^6.65)/g2^7 + (g1^9*t^6.67)/g2^15 + (3*g2^13*t^6.76)/g1^11 + (3*g2^5*t^6.78)/g1^3 + (2*g1^5*t^6.79)/g2^3 + (g1^13*t^6.81)/g2^11 + t^6.84/(g1^26*g2^10) + (2*g2^17*t^6.9)/g1^7 + 3*g1*g2^9*t^6.92 + 2*g1^9*g2*t^6.94 + (2*g1^17*t^6.95)/g2^7 + (2*t^6.98)/(g1^22*g2^6) + t^7./(g1^14*g2^14) + (2*g2^21*t^7.05)/g1^3 + 3*g1^5*g2^13*t^7.06 + 2*g1^13*g2^5*t^7.08 + (2*g1^21*t^7.1)/g2^3 + (3*t^7.12)/(g1^18*g2^2) + (2*t^7.14)/(g1^10*g2^10) + t^7.16/(g1^2*g2^18) + (4*g2^2*t^7.27)/g1^14 + (3*t^7.29)/(g1^6*g2^6) + (g1^2*t^7.3)/g2^14 + (4*g2^6*t^7.41)/g1^10 + (3*t^7.43)/(g1^2*g2^2) + (2*g1^6*t^7.45)/g2^10 + t^7.49/(g1^25*g2^17) + (4*g2^10*t^7.55)/g1^6 + 3*g1^2*g2^2*t^7.57 + (3*g1^10*t^7.59)/g2^6 + (2*t^7.63)/(g1^21*g2^13) + t^7.65/(g1^13*g2^21) + (2*g2^14*t^7.7)/g1^2 + 2*g1^6*g2^6*t^7.71 + (2*g1^14*t^7.73)/g2^2 + (3*t^7.78)/(g1^17*g2^9) + t^7.79/(g1^9*g2^17) + 2*g1^2*g2^18*t^7.84 + g1^10*g2^10*t^7.86 + g1^18*g2^2*t^7.88 + (3*t^7.92)/(g1^13*g2^5) + (2*t^7.94)/(g1^5*g2^13) + t^8.08/(g1*g2^9) + t^8.14/(g1^24*g2^24) - (2*g2^3*t^8.21)/g1^5 - (3*g1^3*t^8.22)/g2^5 - (g1^11*t^8.24)/g2^13 + t^8.25/(g1^36*g2^4) + t^8.28/(g1^20*g2^20) + (g2^15*t^8.33)/g1^9 - (2*g2^7*t^8.35)/g1 - (3*g1^7*t^8.37)/g2 - (g1^15*t^8.38)/g2^9 + t^8.39/g1^32 + t^8.41/(g1^24*g2^8) + (2*t^8.43)/(g1^16*g2^16) + (g2^19*t^8.47)/g1^5 - g1^11*g2^3*t^8.51 + (2*g2^4*t^8.54)/g1^28 + t^8.55/(g1^20*g2^4) + (2*t^8.57)/(g1^12*g2^12) + (2*g2^23*t^8.62)/g1 + g1^7*g2^15*t^8.64 + g1^15*g2^7*t^8.65 + (2*g2^8*t^8.68)/g1^24 + (2*t^8.7)/g1^16 - (2*t^8.71)/(g1^8*g2^8) + (4*g2^12*t^8.82)/g1^20 + (3*g2^4*t^8.84)/g1^12 - t^8.86/(g1^4*g2^4) + (g1^12*t^8.89)/g2^20 + t^8.9/(g1^35*g2^11) + (3*g2^16*t^8.97)/g1^16 + (3*g2^8*t^8.98)/g1^8 - t^4.43/(g1^2*g2^2*y) - t^6.49/(g1^11*g2^3*y) - (g2*t^6.63)/(g1^7*y) - (g1*t^6.65)/(g2^7*y) - t^7.14/(g1^10*g2^10*y) + (g2^2*t^7.27)/(g1^14*y) + t^7.29/(g1^6*g2^6*y) + (g2^6*t^7.41)/(g1^10*y) + (2*t^7.43)/(g1^2*g2^2*y) + (g2^10*t^7.55)/(g1^6*y) + (2*g1^2*g2^2*t^7.57)/y + (g1^10*t^7.59)/(g2^6*y) + (2*g1^6*g2^6*t^7.71)/y + t^7.78/(g1^17*g2^9*y) + (2*t^7.92)/(g1^13*g2^5*y) + t^7.94/(g1^5*g2^13*y) + (3*t^8.06)/(g1^9*g2*y) + (2*t^8.08)/(g1*g2^9*y) + (4*g2^3*t^8.21)/(g1^5*y) + (3*g1^3*t^8.22)/(g2^5*y) + (2*g2^7*t^8.35)/(g1*y) + (3*g1^7*t^8.37)/(g2*y) + (g1^3*g2^11*t^8.49)/y + (g1^11*g2^3*t^8.51)/y - t^8.55/(g1^20*g2^4*y) + t^8.57/(g1^12*g2^12*y) - t^8.7/(g1^16*y) - (g2^4*t^8.84)/(g1^12*y) + t^8.86/(g1^4*g2^4*y) - (g1^4*t^8.87)/(g2^12*y) + (g2^8*t^8.98)/(g1^8*y) - (t^4.43*y)/(g1^2*g2^2) - (t^6.49*y)/(g1^11*g2^3) - (g2*t^6.63*y)/g1^7 - (g1*t^6.65*y)/g2^7 - (t^7.14*y)/(g1^10*g2^10) + (g2^2*t^7.27*y)/g1^14 + (t^7.29*y)/(g1^6*g2^6) + (g2^6*t^7.41*y)/g1^10 + (2*t^7.43*y)/(g1^2*g2^2) + (g2^10*t^7.55*y)/g1^6 + 2*g1^2*g2^2*t^7.57*y + (g1^10*t^7.59*y)/g2^6 + 2*g1^6*g2^6*t^7.71*y + (t^7.78*y)/(g1^17*g2^9) + (2*t^7.92*y)/(g1^13*g2^5) + (t^7.94*y)/(g1^5*g2^13) + (3*t^8.06*y)/(g1^9*g2) + (2*t^8.08*y)/(g1*g2^9) + (4*g2^3*t^8.21*y)/g1^5 + (3*g1^3*t^8.22*y)/g2^5 + (2*g2^7*t^8.35*y)/g1 + (3*g1^7*t^8.37*y)/g2 + g1^3*g2^11*t^8.49*y + g1^11*g2^3*t^8.51*y - (t^8.55*y)/(g1^20*g2^4) + (t^8.57*y)/(g1^12*g2^12) - (t^8.7*y)/g1^16 - (g2^4*t^8.84*y)/g1^12 + (t^8.86*y)/(g1^4*g2^4) - (g1^4*t^8.87*y)/g2^12 + (g2^8*t^8.98*y)/g1^8 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46719 | SU2adj1nf2 | $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_5\phi_1q_2\tilde{q}_1$ | 0.6543 | 0.8625 | 0.7586 | [X:[], M:[1.0, 0.8707, 0.6689, 0.7342, 0.7335], q:[0.7662, 0.2338], qb:[0.565, 0.5643], phi:[0.4677]] | t^2.01 + 2*t^2.2 + t^2.39 + t^2.4 + t^2.61 + 2*t^2.81 + t^3. + t^3.99 + t^4.01 + 2*t^4.21 + 4*t^4.4 + t^4.41 + t^4.59 + 3*t^4.6 + t^4.62 + 6*t^4.79 + 4*t^4.81 + 5*t^5.01 + 6*t^5.2 + t^5.22 + t^5.39 + t^5.4 + 2*t^5.42 + 4*t^5.61 + t^5.81 - 4*t^6. - t^4.4/y - t^4.4*y | detail |