Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46719 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_5\phi_1q_2\tilde{q}_1$ 0.6543 0.8625 0.7586 [X:[], M:[1.0, 0.8707, 0.6689, 0.7342, 0.7335], q:[0.7662, 0.2338], qb:[0.565, 0.5643], phi:[0.4677]] [X:[], M:[[0, 0], [-8, -8], [-9, -1], [3, -5], [-5, 3]], q:[[1, 1], [-1, -1]], qb:[[8, 0], [0, 8]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_4$, $ M_5$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ M_2$, $ \phi_1^2$, $ \phi_1q_2^2$, $ M_1$, $ q_1\tilde{q}_2$, $ M_3^2$, $ M_3M_4$, $ M_3M_5$, $ M_4M_5$, $ \phi_1q_1q_2$, $ M_3q_2\tilde{q}_1$, $ M_5^2$, $ M_3q_2\tilde{q}_2$, $ M_4^2$, $ M_5q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_2M_3$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ M_2M_4$, $ M_2M_5$, $ M_3\phi_1^2$, $ M_3\phi_1q_2^2$, $ M_4\phi_1^2$, $ M_4\phi_1q_2^2$, $ M_1M_3$, $ M_5\phi_1^2$, $ M_5\phi_1q_2^2$, $ M_1M_4$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ M_1M_5$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_2^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ M_2\phi_1^2$, $ M_2\phi_1q_2^2$, $ M_1M_2$, $ \phi_1^4$, $ \phi_1^3q_2^2$, $ \phi_1^2q_2^4$, $ M_1\phi_1^2$ $M_3q_1\tilde{q}_2$ -4 t^2.01 + 2*t^2.2 + t^2.39 + t^2.4 + t^2.61 + 2*t^2.81 + t^3. + t^3.99 + t^4.01 + 2*t^4.21 + 4*t^4.4 + t^4.41 + t^4.59 + 3*t^4.6 + t^4.62 + 6*t^4.79 + 4*t^4.81 + 5*t^5.01 + 6*t^5.2 + t^5.22 + t^5.39 + t^5.4 + 2*t^5.42 + 4*t^5.61 + t^5.81 - 4*t^6. + t^6.02 + t^6.19 + t^6.21 + t^6.22 + t^6.39 + 3*t^6.41 + 5*t^6.6 + 2*t^6.61 + t^6.63 + 10*t^6.8 + 4*t^6.82 + 7*t^6.99 + 2*t^7. + 4*t^7.01 + 4*t^7.02 + 2*t^7.18 + 6*t^7.19 + 12*t^7.21 + t^7.23 + 8*t^7.4 + 3*t^7.41 + 3*t^7.42 + t^7.43 + 4*t^7.59 + 7*t^7.6 + 8*t^7.62 + 2*t^7.79 + 9*t^7.81 + t^7.84 - t^7.98 - t^7.99 + 4*t^8.01 + 3*t^8.03 - 7*t^8.2 + 6*t^8.22 - 4*t^8.39 - 6*t^8.4 + 2*t^8.41 + 6*t^8.42 - 4*t^8.59 + 2*t^8.61 + t^8.63 + 2*t^8.78 + 7*t^8.8 - 6*t^8.81 + 4*t^8.83 - t^4.4/y - t^6.41/y - t^6.6/y - t^6.61/y - t^7.02/y + t^7.21/y + (3*t^7.4)/y + t^7.59/y + (4*t^7.6)/y + t^7.62/y + (2*t^7.79)/y + (4*t^7.81)/y + (7*t^8.01)/y + (8*t^8.2)/y + t^8.39/y + (2*t^8.4)/y + t^8.42/y - t^8.8/y - t^4.4*y - t^6.41*y - t^6.6*y - t^6.61*y - t^7.02*y + t^7.21*y + 3*t^7.4*y + t^7.59*y + 4*t^7.6*y + t^7.62*y + 2*t^7.79*y + 4*t^7.81*y + 7*t^8.01*y + 8*t^8.2*y + t^8.39*y + 2*t^8.4*y + t^8.42*y - t^8.8*y t^2.01/(g1^9*g2) + (g1^3*t^2.2)/g2^5 + (g2^3*t^2.2)/g1^5 + (g2^7*t^2.39)/g1 + (g1^7*t^2.4)/g2 + t^2.61/(g1^8*g2^8) + (2*t^2.81)/(g1^4*g2^4) + t^3. + g1*g2^9*t^3.99 + t^4.01/(g1^18*g2^2) + t^4.21/(g1^6*g2^6) + (g2^2*t^4.21)/g1^14 + (2*t^4.4)/(g1^2*g2^2) + (2*g2^6*t^4.4)/g1^10 + (g1^6*t^4.41)/g2^10 + (g2^10*t^4.59)/g1^6 + (g1^10*t^4.6)/g2^6 + 2*g1^2*g2^2*t^4.6 + t^4.62/(g1^17*g2^9) + (2*g1^14*t^4.79)/g2^2 + 2*g1^6*g2^6*t^4.79 + (2*g2^14*t^4.79)/g1^2 + t^4.81/(g1^5*g2^13) + (3*t^4.81)/(g1^13*g2^5) + (2*t^5.01)/(g1*g2^9) + (3*t^5.01)/(g1^9*g2) + (3*g1^3*t^5.2)/g2^5 + (3*g2^3*t^5.2)/g1^5 + t^5.22/(g1^16*g2^16) + (g2^7*t^5.39)/g1 + (g1^7*t^5.4)/g2 + (2*t^5.42)/(g1^12*g2^12) + (4*t^5.61)/(g1^8*g2^8) + t^5.81/(g1^4*g2^4) - 3*t^6. - (g1^8*t^6.)/g2^8 + t^6.02/(g1^27*g2^3) + (g2^12*t^6.19)/g1^4 + (g2*t^6.21)/g1^23 + t^6.22/(g1^15*g2^7) + g2^16*t^6.39 + t^6.41/(g1^11*g2^3) + (2*g2^5*t^6.41)/g1^19 + (3*g2*t^6.6)/g1^7 + (2*g2^9*t^6.6)/g1^15 + (g1^9*t^6.61)/g2^15 + (g1*t^6.61)/g2^7 + t^6.63/(g1^26*g2^10) + (g1^13*t^6.8)/g2^11 + (2*g1^5*t^6.8)/g2^3 + (4*g2^5*t^6.8)/g1^3 + (3*g2^13*t^6.8)/g1^11 + t^6.82/(g1^14*g2^14) + (3*t^6.82)/(g1^22*g2^6) + 2*g1^9*g2*t^6.99 + 3*g1*g2^9*t^6.99 + (2*g2^17*t^6.99)/g1^7 + (2*g1^17*t^7.)/g2^7 + (4*t^7.01)/(g1^18*g2^2) + t^7.02/(g1^2*g2^18) + (3*t^7.02)/(g1^10*g2^10) + (2*g2^21*t^7.18)/g1^3 + (2*g1^21*t^7.19)/g2^3 + 2*g1^13*g2^5*t^7.19 + 2*g1^5*g2^13*t^7.19 + (2*g1^2*t^7.21)/g2^14 + (5*t^7.21)/(g1^6*g2^6) + (5*g2^2*t^7.21)/g1^14 + t^7.23/(g1^25*g2^17) + (4*t^7.4)/(g1^2*g2^2) + (4*g2^6*t^7.4)/g1^10 + (3*g1^6*t^7.41)/g2^10 + (3*t^7.42)/(g1^21*g2^13) + t^7.43/(g1^13*g2^21) + (4*g2^10*t^7.59)/g1^6 + (4*g1^10*t^7.6)/g2^6 + 3*g1^2*g2^2*t^7.6 + (2*t^7.62)/(g1^9*g2^17) + (6*t^7.62)/(g1^17*g2^9) + (g1^14*t^7.79)/g2^2 + (g2^14*t^7.79)/g1^2 + (4*t^7.81)/(g1^5*g2^13) + (5*t^7.81)/(g1^13*g2^5) + t^7.84/(g1^24*g2^24) - g1^10*g2^10*t^7.98 - g1^18*g2^2*t^7.99 + (3*t^8.01)/(g1*g2^9) + t^8.01/(g1^9*g2) + (2*t^8.03)/(g1^20*g2^20) + t^8.03/(g1^36*g2^4) - (g1^11*t^8.2)/g2^13 - (3*g1^3*t^8.2)/g2^5 - (3*g2^3*t^8.2)/g1^5 + t^8.22/g1^32 + (4*t^8.22)/(g1^16*g2^16) + t^8.22/(g1^24*g2^8) - (5*g2^7*t^8.39)/g1 + (g2^15*t^8.39)/g1^9 - (g1^15*t^8.4)/g2^9 - (5*g1^7*t^8.4)/g2 + (2*g2^4*t^8.41)/g1^28 + (5*t^8.42)/(g1^12*g2^12) + t^8.42/(g1^20*g2^4) - 3*g1^11*g2^3*t^8.59 - 2*g1^3*g2^11*t^8.59 + (g2^19*t^8.59)/g1^5 + (2*t^8.61)/g1^16 - (2*t^8.61)/(g1^8*g2^8) + (2*g2^8*t^8.61)/g1^24 + t^8.63/(g1^35*g2^11) + (2*g2^23*t^8.78)/g1 + (3*g2^4*t^8.8)/g1^12 + (4*g2^12*t^8.8)/g1^20 + (g1^12*t^8.81)/g2^20 - (g1^4*t^8.81)/g2^12 - (6*t^8.81)/(g1^4*g2^4) + t^8.83/(g1^23*g2^15) + (3*t^8.83)/(g1^31*g2^7) - t^4.4/(g1^2*g2^2*y) - t^6.41/(g1^11*g2^3*y) - (g2*t^6.6)/(g1^7*y) - (g1*t^6.61)/(g2^7*y) - t^7.02/(g1^10*g2^10*y) + (g2^2*t^7.21)/(g1^14*y) + (2*t^7.4)/(g1^2*g2^2*y) + (g2^6*t^7.4)/(g1^10*y) + (g2^10*t^7.59)/(g1^6*y) + (g1^10*t^7.6)/(g2^6*y) + (3*g1^2*g2^2*t^7.6)/y + t^7.62/(g1^17*g2^9*y) + (2*g1^6*g2^6*t^7.79)/y + t^7.81/(g1^5*g2^13*y) + (3*t^7.81)/(g1^13*g2^5*y) + (3*t^8.01)/(g1*g2^9*y) + (4*t^8.01)/(g1^9*g2*y) + (4*g1^3*t^8.2)/(g2^5*y) + (4*g2^3*t^8.2)/(g1^5*y) + (g2^7*t^8.39)/(g1*y) + (2*g1^7*t^8.4)/(g2*y) + (2*t^8.42)/(g1^12*g2^12*y) - t^8.42/(g1^20*g2^4*y) - t^8.61/(g1^16*y) + t^8.61/(g1^8*g2^8*y) - (g2^4*t^8.8)/(g1^12*y) - (g1^4*t^8.81)/(g2^12*y) + t^8.81/(g1^4*g2^4*y) - (t^4.4*y)/(g1^2*g2^2) - (t^6.41*y)/(g1^11*g2^3) - (g2*t^6.6*y)/g1^7 - (g1*t^6.61*y)/g2^7 - (t^7.02*y)/(g1^10*g2^10) + (g2^2*t^7.21*y)/g1^14 + (2*t^7.4*y)/(g1^2*g2^2) + (g2^6*t^7.4*y)/g1^10 + (g2^10*t^7.59*y)/g1^6 + (g1^10*t^7.6*y)/g2^6 + 3*g1^2*g2^2*t^7.6*y + (t^7.62*y)/(g1^17*g2^9) + 2*g1^6*g2^6*t^7.79*y + (t^7.81*y)/(g1^5*g2^13) + (3*t^7.81*y)/(g1^13*g2^5) + (3*t^8.01*y)/(g1*g2^9) + (4*t^8.01*y)/(g1^9*g2) + (4*g1^3*t^8.2*y)/g2^5 + (4*g2^3*t^8.2*y)/g1^5 + (g2^7*t^8.39*y)/g1 + (2*g1^7*t^8.4*y)/g2 + (2*t^8.42*y)/(g1^12*g2^12) - (t^8.42*y)/(g1^20*g2^4) - (t^8.61*y)/g1^16 + (t^8.61*y)/(g1^8*g2^8) - (g2^4*t^8.8*y)/g1^12 - (g1^4*t^8.81*y)/g2^12 + (t^8.81*y)/(g1^4*g2^4)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47061 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6\phi_1^2$ 0.6491 0.8532 0.7608 [X:[], M:[1.0, 0.9045, 0.6874, 0.7409, 0.7352, 1.0477], q:[0.7619, 0.2381], qb:[0.5506, 0.5449], phi:[0.4761]] t^2.06 + t^2.21 + t^2.22 + t^2.35 + t^2.37 + t^2.71 + t^2.86 + t^3. + t^3.14 + t^3.92 + t^4.12 + t^4.27 + t^4.29 + 2*t^4.41 + 2*t^4.43 + t^4.45 + t^4.55 + 2*t^4.57 + t^4.59 + 2*t^4.7 + 2*t^4.71 + 2*t^4.73 + t^4.78 + 2*t^4.92 + t^4.94 + 2*t^5.06 + t^5.08 + 3*t^5.21 + 2*t^5.22 + 2*t^5.35 + 2*t^5.37 + t^5.43 + t^5.49 + t^5.51 + t^5.57 + 2*t^5.71 + t^5.86 - 2*t^6. - t^4.43/y - t^4.43*y detail
48215 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ 0.6752 0.9041 0.7468 [X:[], M:[1.0, 0.8701, 0.6688, 0.7338, 0.7338, 0.6688], q:[0.7662, 0.2338], qb:[0.5649, 0.5649], phi:[0.4675]] 2*t^2.01 + 2*t^2.2 + 2*t^2.4 + t^2.61 + 2*t^2.81 + t^3. + 3*t^4.01 + 4*t^4.21 + 7*t^4.4 + 4*t^4.6 + 2*t^4.62 + 6*t^4.79 + 6*t^4.81 + 6*t^5.01 + 6*t^5.2 + t^5.22 + 2*t^5.4 + 2*t^5.42 + 4*t^5.61 + t^5.81 - 5*t^6. - t^4.4/y - t^4.4*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46172 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_4\phi_1q_2\tilde{q}_2$ 0.6348 0.8263 0.7683 [X:[], M:[1.0, 0.8719, 0.6781, 0.7258], q:[0.766, 0.234], qb:[0.5559, 0.5722], phi:[0.468]] t^2.03 + t^2.18 + t^2.37 + t^2.42 + t^2.62 + 2*t^2.81 + t^3. + t^3.77 + t^4.01 + t^4.07 + t^4.21 + t^4.36 + t^4.4 + t^4.45 + t^4.55 + t^4.6 + t^4.65 + 2*t^4.74 + 3*t^4.79 + 4*t^4.84 + 2*t^4.99 + t^5.03 + 3*t^5.18 + 3*t^5.23 + t^5.37 + 3*t^5.42 + 4*t^5.62 + 2*t^5.81 - 3*t^6. - t^4.4/y - t^4.4*y detail