Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47049 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{6}$ 0.6438 0.8466 0.7605 [M:[0.9911, 0.7578, 1.0267, 0.7555, 0.7377, 1.0089], q:[0.7478, 0.2611], qb:[0.4766, 0.4967], phi:[0.5045]] [M:[[4, 4], [-5, 7], [-12, -12], [-1, -13], [7, -5], [-4, -4]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{5}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{4}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{6}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{5}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{5}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}^{2}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}M_{5}$, ${ }M_{4}M_{6}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }M_{2}M_{6}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{5}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$ ${}$ -4 2*t^2.213 + t^2.267 + 2*t^2.273 + 2*t^3.027 + 2*t^3.08 + t^3.673 + t^4.373 + 3*t^4.426 + t^4.433 + 2*t^4.48 + 4*t^4.487 + t^4.493 + t^4.533 + 2*t^4.54 + 3*t^4.547 + 4*t^5.24 + 5*t^5.293 + 4*t^5.3 + 2*t^5.347 + 3*t^5.354 + 2*t^5.886 + t^5.947 - 4*t^6. + t^6.053 - t^6.06 + 4*t^6.107 + 3*t^6.16 + 2*t^6.586 + 5*t^6.64 + 2*t^6.646 + 3*t^6.693 + 7*t^6.7 + 2*t^6.707 + 2*t^6.746 + 4*t^6.753 + 5*t^6.76 + 2*t^6.767 + t^6.8 + t^6.807 + t^6.813 + 4*t^6.82 - t^6.867 + t^7.4 - t^7.407 + 6*t^7.453 - t^7.46 - t^7.467 + 8*t^7.507 + 6*t^7.513 + t^7.52 + 5*t^7.56 + 8*t^7.567 + 6*t^7.574 + 2*t^7.613 + 3*t^7.62 + 4*t^7.627 + t^8.046 + 3*t^8.1 - t^8.16 - 9*t^8.213 - 2*t^8.22 - 2*t^8.267 - 10*t^8.273 + 7*t^8.32 + t^8.327 - 2*t^8.334 + 8*t^8.373 + 6*t^8.38 + 3*t^8.427 + 4*t^8.434 + t^8.746 + 3*t^8.799 + t^8.806 + 7*t^8.853 + 3*t^8.86 + t^8.866 + 5*t^8.906 + 10*t^8.913 + 2*t^8.92 + t^8.927 + 3*t^8.96 + 5*t^8.966 + 6*t^8.973 + 3*t^8.98 + t^8.987 - t^4.513/y - t^6.727/y - t^6.78/y - t^6.787/y + t^7.426/y + t^7.433/y + (2*t^7.48)/y + (5*t^7.487)/y + t^7.54/y + t^7.547/y - t^7.593/y + (5*t^8.24)/y + t^8.247/y + (6*t^8.293)/y + (5*t^8.3)/y + (2*t^8.347)/y + (4*t^8.354)/y + (2*t^8.886)/y + (2*t^8.947)/y - t^8.993/y - t^4.513*y - t^6.727*y - t^6.78*y - t^6.787*y + t^7.426*y + t^7.433*y + 2*t^7.48*y + 5*t^7.487*y + t^7.54*y + t^7.547*y - t^7.593*y + 5*t^8.24*y + t^8.247*y + 6*t^8.293*y + 5*t^8.3*y + 2*t^8.347*y + 4*t^8.354*y + 2*t^8.886*y + 2*t^8.947*y - t^8.993*y (2*g1^7*t^2.213)/g2^5 + t^2.267/(g1*g2^13) + (2*g2^7*t^2.273)/g1^5 + (2*t^3.027)/(g1^4*g2^4) + (2*t^3.08)/(g1^12*g2^12) + g1^13*g2*t^3.673 + (g1^22*t^4.373)/g2^2 + (3*g1^14*t^4.426)/g2^10 + g1^10*g2^10*t^4.433 + (2*g1^6*t^4.48)/g2^18 + 4*g1^2*g2^2*t^4.487 + (g2^22*t^4.493)/g1^2 + t^4.533/(g1^2*g2^26) + (2*t^4.54)/(g1^6*g2^6) + (3*g2^14*t^4.547)/g1^10 + (4*g1^3*t^5.24)/g2^9 + (5*t^5.293)/(g1^5*g2^17) + (4*g2^3*t^5.3)/g1^9 + (2*t^5.347)/(g1^13*g2^25) + (3*t^5.354)/(g1^17*g2^5) + (2*g1^20*t^5.886)/g2^4 + g1^8*g2^8*t^5.947 - 4*t^6. + t^6.053/(g1^8*g2^8) - (g2^12*t^6.06)/g1^12 + (4*t^6.107)/(g1^16*g2^16) + (3*t^6.16)/(g1^24*g2^24) + (2*g1^29*t^6.586)/g2^7 + (5*g1^21*t^6.64)/g2^15 + 2*g1^17*g2^5*t^6.646 + (3*g1^13*t^6.693)/g2^23 + (7*g1^9*t^6.7)/g2^3 + 2*g1^5*g2^17*t^6.707 + (2*g1^5*t^6.746)/g2^31 + (4*g1*t^6.753)/g2^11 + (5*g2^9*t^6.76)/g1^3 + (2*g2^29*t^6.767)/g1^7 + t^6.8/(g1^3*g2^39) + t^6.807/(g1^7*g2^19) + (g2*t^6.813)/g1^11 + (4*g2^21*t^6.82)/g1^15 - t^6.867/(g1^19*g2^7) + (g1^18*t^7.4)/g2^6 - g1^14*g2^14*t^7.407 + (6*g1^10*t^7.453)/g2^14 - g1^6*g2^6*t^7.46 - g1^2*g2^26*t^7.467 + (8*g1^2*t^7.507)/g2^22 + (6*t^7.513)/(g1^2*g2^2) + (g2^18*t^7.52)/g1^6 + (5*t^7.56)/(g1^6*g2^30) + (8*t^7.567)/(g1^10*g2^10) + (6*g2^10*t^7.574)/g1^14 + (2*t^7.613)/(g1^14*g2^38) + (3*t^7.62)/(g1^18*g2^18) + (4*g2^2*t^7.627)/g1^22 + (g1^35*t^8.046)/g2 + (3*g1^27*t^8.1)/g2^9 - g1^15*g2^3*t^8.16 - (9*g1^7*t^8.213)/g2^5 - 2*g1^3*g2^15*t^8.22 - (2*t^8.267)/(g1*g2^13) - (10*g2^7*t^8.273)/g1^5 + (7*t^8.32)/(g1^9*g2^21) + t^8.327/(g1^13*g2) - (2*g2^19*t^8.334)/g1^17 + (8*t^8.373)/(g1^17*g2^29) + (6*t^8.38)/(g1^21*g2^9) + (3*t^8.427)/(g1^25*g2^37) + (4*t^8.434)/(g1^29*g2^17) + (g1^44*t^8.746)/g2^4 + (3*g1^36*t^8.799)/g2^12 + g1^32*g2^8*t^8.806 + (7*g1^28*t^8.853)/g2^20 + 3*g1^24*t^8.86 + g1^20*g2^20*t^8.866 + (5*g1^20*t^8.906)/g2^28 + (10*g1^16*t^8.913)/g2^8 + 2*g1^12*g2^12*t^8.92 + g1^8*g2^32*t^8.927 + (3*g1^12*t^8.96)/g2^36 + (5*g1^8*t^8.966)/g2^16 + 6*g1^4*g2^4*t^8.973 + 3*g2^24*t^8.98 + (g2^44*t^8.987)/g1^4 - t^4.513/(g1^2*g2^2*y) - (g1^5*t^6.727)/(g2^7*y) - t^6.78/(g1^3*g2^15*y) - (g2^5*t^6.787)/(g1^7*y) + (g1^14*t^7.426)/(g2^10*y) + (g1^10*g2^10*t^7.433)/y + (2*g1^6*t^7.48)/(g2^18*y) + (5*g1^2*g2^2*t^7.487)/y + t^7.54/(g1^6*g2^6*y) + (g2^14*t^7.547)/(g1^10*y) - t^7.593/(g1^14*g2^14*y) + (5*g1^3*t^8.24)/(g2^9*y) + (g2^11*t^8.247)/(g1*y) + (6*t^8.293)/(g1^5*g2^17*y) + (5*g2^3*t^8.3)/(g1^9*y) + (2*t^8.347)/(g1^13*g2^25*y) + (4*t^8.354)/(g1^17*g2^5*y) + (2*g1^20*t^8.886)/(g2^4*y) + (2*g1^8*g2^8*t^8.947)/y - (g1^4*t^8.993)/(g2^20*y) - (t^4.513*y)/(g1^2*g2^2) - (g1^5*t^6.727*y)/g2^7 - (t^6.78*y)/(g1^3*g2^15) - (g2^5*t^6.787*y)/g1^7 + (g1^14*t^7.426*y)/g2^10 + g1^10*g2^10*t^7.433*y + (2*g1^6*t^7.48*y)/g2^18 + 5*g1^2*g2^2*t^7.487*y + (t^7.54*y)/(g1^6*g2^6) + (g2^14*t^7.547*y)/g1^10 - (t^7.593*y)/(g1^14*g2^14) + (5*g1^3*t^8.24*y)/g2^9 + (g2^11*t^8.247*y)/g1 + (6*t^8.293*y)/(g1^5*g2^17) + (5*g2^3*t^8.3*y)/g1^9 + (2*t^8.347*y)/(g1^13*g2^25) + (4*t^8.354*y)/(g1^17*g2^5) + (2*g1^20*t^8.886*y)/g2^4 + 2*g1^8*g2^8*t^8.947*y - (g1^4*t^8.993*y)/g2^20


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46382 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{2}$ 0.6449 0.848 0.7605 [M:[0.9839, 0.7569, 1.0482, 0.7672, 0.7351], q:[0.746, 0.2701], qb:[0.465, 0.4868], phi:[0.508]] 2*t^2.205 + 2*t^2.271 + t^2.302 + t^2.952 + t^3.048 + 2*t^3.145 + t^3.633 + t^4.314 + t^4.38 + 3*t^4.41 + t^4.445 + 4*t^4.476 + 2*t^4.507 + 3*t^4.541 + 2*t^4.572 + t^4.603 + 2*t^5.157 + 2*t^5.223 + 3*t^5.253 + 2*t^5.319 + 4*t^5.35 + 3*t^5.415 + 2*t^5.446 + 2*t^5.838 + 2*t^5.904 - 3*t^6. - t^4.524/y - t^4.524*y detail