Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1912 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6q_1\tilde{q}_1$ | 0.6438 | 0.8466 | 0.7605 | [X:[], M:[0.9911, 1.0267, 1.0089, 0.7377, 0.7578, 0.7555], q:[0.7478, 0.2611], qb:[0.4967, 0.4766], phi:[0.5045]] | [X:[], M:[[4, 4], [-12, -12], [-4, -4], [-5, 7], [7, -5], [-13, -1]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_4$, $ q_2\tilde{q}_2$, $ M_5$, $ q_2\tilde{q}_1$, $ M_6$, $ M_3$, $ \phi_1^2$, $ M_2$, $ \phi_1q_2^2$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_4^2$, $ M_4q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_4M_6$, $ M_6q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_4M_5$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_6^2$, $ M_5M_6$, $ \phi_1q_1q_2$, $ M_6q_2\tilde{q}_1$, $ M_5^2$, $ M_5q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_3M_4$, $ M_4\phi_1^2$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_2M_4$, $ M_3M_6$, $ M_6\phi_1^2$, $ M_4\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_3M_5$, $ M_5\phi_1^2$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_2M_5$, $ M_5\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_1$, $ M_2M_6$, $ M_6\phi_1q_2^2$, $ M_4q_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ M_5q_1\tilde{q}_2$ | . | -4 | 2*t^2.21 + 3*t^2.27 + 2*t^3.03 + 2*t^3.08 + t^3.67 + t^4.37 + 4*t^4.43 + 2*t^4.48 + 5*t^4.49 + t^4.53 + 2*t^4.54 + 3*t^4.55 + 4*t^5.24 + 5*t^5.29 + 4*t^5.3 + 5*t^5.35 + 2*t^5.89 + t^5.95 - 4*t^6. + t^6.05 - t^6.06 + 4*t^6.11 + 3*t^6.16 + 2*t^6.59 + 5*t^6.64 + 2*t^6.65 + 3*t^6.69 + 7*t^6.7 + 2*t^6.71 + 6*t^6.75 + 5*t^6.76 + 2*t^6.77 + t^6.8 + 2*t^6.81 + 4*t^6.82 - t^6.87 + t^7.4 - t^7.41 + 6*t^7.45 - t^7.46 - t^7.47 + 14*t^7.51 + t^7.52 + 5*t^7.56 + 14*t^7.57 + 2*t^7.61 + 3*t^7.62 + 4*t^7.63 + t^8.05 + 3*t^8.1 - t^8.16 - 9*t^8.21 - 2*t^8.22 - 12*t^8.27 + 7*t^8.32 - t^8.33 + 8*t^8.37 + 6*t^8.38 + 7*t^8.43 + t^8.75 + 3*t^8.8 + t^8.81 + 7*t^8.85 + 3*t^8.86 + t^8.87 + 15*t^8.91 + 2*t^8.92 + t^8.93 + 3*t^8.96 + 11*t^8.97 + 3*t^8.98 + t^8.99 - t^4.51/y - t^6.73/y - t^6.78/y - t^6.79/y + (2*t^7.43)/y + (2*t^7.48)/y + (5*t^7.49)/y + t^7.54/y + t^7.55/y - t^7.59/y + (5*t^8.24)/y + t^8.25/y + (6*t^8.29)/y + (5*t^8.3)/y + (6*t^8.35)/y + (2*t^8.89)/y + (2*t^8.95)/y - t^8.99/y - t^4.51*y - t^6.73*y - t^6.78*y - t^6.79*y + 2*t^7.43*y + 2*t^7.48*y + 5*t^7.49*y + t^7.54*y + t^7.55*y - t^7.59*y + 5*t^8.24*y + t^8.25*y + 6*t^8.29*y + 5*t^8.3*y + 6*t^8.35*y + 2*t^8.89*y + 2*t^8.95*y - t^8.99*y | (2*g2^7*t^2.21)/g1^5 + (2*g1^7*t^2.27)/g2^5 + t^2.27/(g1^13*g2) + (2*t^3.03)/(g1^4*g2^4) + (2*t^3.08)/(g1^12*g2^12) + g1*g2^13*t^3.67 + (g2^22*t^4.37)/g1^2 + g1^10*g2^10*t^4.43 + (3*g2^14*t^4.43)/g1^10 + (2*g2^6*t^4.48)/g1^18 + (g1^22*t^4.49)/g2^2 + 4*g1^2*g2^2*t^4.49 + t^4.53/(g1^26*g2^2) + (2*t^4.54)/(g1^6*g2^6) + (3*g1^14*t^4.55)/g2^10 + (4*g2^3*t^5.24)/g1^9 + (5*t^5.29)/(g1^17*g2^5) + (4*g1^3*t^5.3)/g2^9 + (3*t^5.35)/(g1^5*g2^17) + (2*t^5.35)/(g1^25*g2^13) + (2*g2^20*t^5.89)/g1^4 + g1^8*g2^8*t^5.95 - 4*t^6. + t^6.05/(g1^8*g2^8) - (g1^12*t^6.06)/g2^12 + (4*t^6.11)/(g1^16*g2^16) + (3*t^6.16)/(g1^24*g2^24) + (2*g2^29*t^6.59)/g1^7 + (5*g2^21*t^6.64)/g1^15 + 2*g1^5*g2^17*t^6.65 + (3*g2^13*t^6.69)/g1^23 + (7*g2^9*t^6.7)/g1^3 + 2*g1^17*g2^5*t^6.71 + (4*g2*t^6.75)/g1^11 + (2*g2^5*t^6.75)/g1^31 + (5*g1^9*t^6.76)/g2^3 + (2*g1^29*t^6.77)/g2^7 + t^6.8/(g1^39*g2^3) + (g1*t^6.81)/g2^11 + t^6.81/(g1^19*g2^7) + (4*g1^21*t^6.82)/g2^15 - t^6.87/(g1^7*g2^19) + (g2^18*t^7.4)/g1^6 - g1^14*g2^14*t^7.41 + (6*g2^10*t^7.45)/g1^14 - g1^6*g2^6*t^7.46 - g1^26*g2^2*t^7.47 + (6*t^7.51)/(g1^2*g2^2) + (8*g2^2*t^7.51)/g1^22 + (g1^18*t^7.52)/g2^6 + (5*t^7.56)/(g1^30*g2^6) + (6*g1^10*t^7.57)/g2^14 + (8*t^7.57)/(g1^10*g2^10) + (2*t^7.61)/(g1^38*g2^14) + (3*t^7.62)/(g1^18*g2^18) + (4*g1^2*t^7.63)/g2^22 + (g2^35*t^8.05)/g1 + (3*g2^27*t^8.1)/g1^9 - g1^3*g2^15*t^8.16 - (9*g2^7*t^8.21)/g1^5 - 2*g1^15*g2^3*t^8.22 - (10*g1^7*t^8.27)/g2^5 - (2*t^8.27)/(g1^13*g2) + (7*t^8.32)/(g1^21*g2^9) - (2*g1^19*t^8.33)/g2^17 + t^8.33/(g1*g2^13) + (8*t^8.37)/(g1^29*g2^17) + (6*t^8.38)/(g1^9*g2^21) + (4*t^8.43)/(g1^17*g2^29) + (3*t^8.43)/(g1^37*g2^25) + (g2^44*t^8.75)/g1^4 + (3*g2^36*t^8.8)/g1^12 + g1^8*g2^32*t^8.81 + (7*g2^28*t^8.85)/g1^20 + 3*g2^24*t^8.86 + g1^20*g2^20*t^8.87 + (10*g2^16*t^8.91)/g1^8 + (5*g2^20*t^8.91)/g1^28 + 2*g1^12*g2^12*t^8.92 + g1^32*g2^8*t^8.93 + (3*g2^12*t^8.96)/g1^36 + 6*g1^4*g2^4*t^8.97 + (5*g2^8*t^8.97)/g1^16 + 3*g1^24*t^8.98 + (g1^44*t^8.99)/g2^4 - t^4.51/(g1^2*g2^2*y) - (g2^5*t^6.73)/(g1^7*y) - t^6.78/(g1^15*g2^3*y) - (g1^5*t^6.79)/(g2^7*y) + (g1^10*g2^10*t^7.43)/y + (g2^14*t^7.43)/(g1^10*y) + (2*g2^6*t^7.48)/(g1^18*y) + (5*g1^2*g2^2*t^7.49)/y + t^7.54/(g1^6*g2^6*y) + (g1^14*t^7.55)/(g2^10*y) - t^7.59/(g1^14*g2^14*y) + (5*g2^3*t^8.24)/(g1^9*y) + (g1^11*t^8.25)/(g2*y) + (6*t^8.29)/(g1^17*g2^5*y) + (5*g1^3*t^8.3)/(g2^9*y) + (4*t^8.35)/(g1^5*g2^17*y) + (2*t^8.35)/(g1^25*g2^13*y) + (2*g2^20*t^8.89)/(g1^4*y) + (2*g1^8*g2^8*t^8.95)/y - (g2^4*t^8.99)/(g1^20*y) - (t^4.51*y)/(g1^2*g2^2) - (g2^5*t^6.73*y)/g1^7 - (t^6.78*y)/(g1^15*g2^3) - (g1^5*t^6.79*y)/g2^7 + g1^10*g2^10*t^7.43*y + (g2^14*t^7.43*y)/g1^10 + (2*g2^6*t^7.48*y)/g1^18 + 5*g1^2*g2^2*t^7.49*y + (t^7.54*y)/(g1^6*g2^6) + (g1^14*t^7.55*y)/g2^10 - (t^7.59*y)/(g1^14*g2^14) + (5*g2^3*t^8.24*y)/g1^9 + (g1^11*t^8.25*y)/g2 + (6*t^8.29*y)/(g1^17*g2^5) + (5*g1^3*t^8.3*y)/g2^9 + (4*t^8.35*y)/(g1^5*g2^17) + (2*t^8.35*y)/(g1^25*g2^13) + (2*g2^20*t^8.89*y)/g1^4 + 2*g1^8*g2^8*t^8.95*y - (g2^4*t^8.99*y)/g1^20 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
544 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ | 0.6254 | 0.8129 | 0.7694 | [X:[], M:[0.9847, 1.0459, 1.0153, 0.7462, 0.7462], q:[0.7462, 0.2691], qb:[0.477, 0.477], phi:[0.5077]] | 4*t^2.24 + 2*t^3.05 + 2*t^3.14 + 2*t^3.67 + 3*t^4.39 + 10*t^4.48 + 8*t^5.28 + 6*t^5.38 + 7*t^5.91 - 6*t^6. - t^4.52/y - t^4.52*y | detail |