Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47014 SU2adj1nf2 ${}M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{1}q_{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{1}\tilde{q}_{1}$ 0.6266 0.8144 0.7694 [M:[1.0266, 0.9468, 1.0, 1.0266, 0.7278, 0.7012], q:[0.5421, 0.5111], qb:[0.7567, 0.2433], phi:[0.4867]] [M:[[0, -4], [0, 8], [0, 0], [0, -4], [1, 5], [1, 9]], q:[[-1, -8], [1, 0]], qb:[[0, -1], [0, 1]], phi:[[0, 2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{5}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }M_{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{6}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{5}^{2}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{2}M_{5}$, ${ }M_{3}M_{6}$, ${ }M_{3}M_{5}$, ${ }M_{1}M_{6}$, ${ }M_{4}M_{6}$, ${ }M_{1}M_{5}$, ${ }M_{4}M_{5}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{4}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ ${}$ -3 t^2.104 + t^2.183 + t^2.263 + t^2.356 + t^2.84 + t^3. + 2*t^3.08 + t^3.723 + t^3.803 + t^4.207 + t^4.287 + 2*t^4.367 + t^4.447 + t^4.46 + 2*t^4.527 + t^4.54 + 2*t^4.62 + 2*t^4.713 + t^4.944 + t^5.024 + t^5.104 + 3*t^5.183 + 3*t^5.263 + 2*t^5.343 + t^5.356 + 2*t^5.436 + t^5.681 + t^5.827 + t^5.84 + t^5.907 + t^5.92 + 2*t^5.987 - 3*t^6. + t^6.066 + 2*t^6.08 - t^6.093 + 3*t^6.16 + t^6.311 + t^6.391 + 2*t^6.47 + 2*t^6.55 + t^6.564 + 3*t^6.63 + t^6.644 - t^6.657 + 2*t^6.71 + 2*t^6.723 - t^6.737 + 2*t^6.79 + 3*t^6.803 + 4*t^6.883 + 2*t^6.976 + t^7.048 + 2*t^7.069 + t^7.127 + 2*t^7.207 + 3*t^7.287 + 4*t^7.367 + 5*t^7.447 - t^7.46 + 4*t^7.527 + 4*t^7.606 + 2*t^7.62 - t^7.633 + 3*t^7.7 + t^7.713 + t^7.784 + 3*t^7.793 + t^7.864 + t^7.931 + t^7.944 + t^8.01 + 2*t^8.024 + 2*t^8.09 - 2*t^8.104 + 2*t^8.17 - 2*t^8.183 - t^8.197 + 3*t^8.25 - 2*t^8.277 + 2*t^8.33 + 4*t^8.343 - 5*t^8.356 + t^8.414 + 3*t^8.423 + t^8.436 - t^8.45 + t^8.494 + 3*t^8.516 + t^8.521 + 2*t^8.574 + 2*t^8.654 + t^8.667 + t^8.681 + 4*t^8.734 + t^8.747 + 3*t^8.814 + 2*t^8.827 - 4*t^8.84 + 4*t^8.893 + 2*t^8.907 - t^8.92 + 2*t^8.973 + 4*t^8.987 - t^4.46/y - t^6.564/y - t^6.644/y + t^7.287/y - t^7.3/y + t^7.367/y + t^7.38/y + t^7.447/y + t^7.46/y + (2*t^7.62)/y + t^7.944/y + t^8.024/y + (2*t^8.104)/y + (3*t^8.183)/y + t^8.197/y + (3*t^8.263)/y + t^8.277/y + (2*t^8.343)/y + (2*t^8.356)/y + (2*t^8.436)/y - t^8.667/y - t^8.747/y + t^8.84/y + (2*t^8.907)/y + (2*t^8.92)/y + (2*t^8.987)/y - t^4.46*y - t^6.564*y - t^6.644*y + t^7.287*y - t^7.3*y + t^7.367*y + t^7.38*y + t^7.447*y + t^7.46*y + 2*t^7.62*y + t^7.944*y + t^8.024*y + 2*t^8.104*y + 3*t^8.183*y + t^8.197*y + 3*t^8.263*y + t^8.277*y + 2*t^8.343*y + 2*t^8.356*y + 2*t^8.436*y - t^8.667*y - t^8.747*y + t^8.84*y + 2*t^8.907*y + 2*t^8.92*y + 2*t^8.987*y g1*g2^9*t^2.104 + g1*g2^5*t^2.183 + g1*g2*t^2.263 + t^2.356/(g1*g2^7) + g2^8*t^2.84 + t^3. + (2*t^3.08)/g2^4 + g1*g2^3*t^3.723 + (g1*t^3.803)/g2 + g1^2*g2^18*t^4.207 + g1^2*g2^14*t^4.287 + 2*g1^2*g2^10*t^4.367 + g1^2*g2^6*t^4.447 + g2^2*t^4.46 + 2*g1^2*g2^2*t^4.527 + t^4.54/g2^2 + (2*t^4.62)/g2^6 + (2*t^4.713)/(g1^2*g2^14) + g1*g2^17*t^4.944 + g1*g2^13*t^5.024 + g1*g2^9*t^5.104 + 3*g1*g2^5*t^5.183 + 3*g1*g2*t^5.263 + (2*g1*t^5.343)/g2^3 + t^5.356/(g1*g2^7) + (2*t^5.436)/(g1*g2^11) + g2^16*t^5.681 + g1^2*g2^12*t^5.827 + g2^8*t^5.84 + g1^2*g2^8*t^5.907 + g2^4*t^5.92 + 2*g1^2*g2^4*t^5.987 - 3*t^6. + g1^2*t^6.066 + (2*t^6.08)/g2^4 - t^6.093/(g1^2*g2^8) + (3*t^6.16)/g2^8 + g1^3*g2^27*t^6.311 + g1^3*g2^23*t^6.391 + 2*g1^3*g2^19*t^6.47 + 2*g1^3*g2^15*t^6.55 + g1*g2^11*t^6.564 + 3*g1^3*g2^11*t^6.63 + g1*g2^7*t^6.644 - (g2^3*t^6.657)/g1 + 2*g1^3*g2^7*t^6.71 + 2*g1*g2^3*t^6.723 - t^6.737/(g1*g2) + 2*g1^3*g2^3*t^6.79 + (3*g1*t^6.803)/g2 + (4*g1*t^6.883)/g2^5 + (2*t^6.976)/(g1*g2^13) + g1^2*g2^26*t^7.048 + (2*t^7.069)/(g1^3*g2^21) + g1^2*g2^22*t^7.127 + 2*g1^2*g2^18*t^7.207 + 3*g1^2*g2^14*t^7.287 + 4*g1^2*g2^10*t^7.367 + 5*g1^2*g2^6*t^7.447 - g2^2*t^7.46 + 4*g1^2*g2^2*t^7.527 + (4*g1^2*t^7.606)/g2^2 + (2*t^7.62)/g2^6 - t^7.633/(g1^2*g2^10) + (3*t^7.7)/g2^10 + t^7.713/(g1^2*g2^14) + g1*g2^25*t^7.784 + (3*t^7.793)/(g1^2*g2^18) + g1*g2^21*t^7.864 + g1^3*g2^21*t^7.931 + g1*g2^17*t^7.944 + g1^3*g2^17*t^8.01 + 2*g1*g2^13*t^8.024 + 2*g1^3*g2^13*t^8.09 - 2*g1*g2^9*t^8.104 + 2*g1^3*g2^9*t^8.17 - 2*g1*g2^5*t^8.183 - (g2*t^8.197)/g1 + 3*g1^3*g2^5*t^8.25 - (2*t^8.277)/(g1*g2^3) + 2*g1^3*g2*t^8.33 + (4*g1*t^8.343)/g2^3 - (5*t^8.356)/(g1*g2^7) + g1^4*g2^36*t^8.414 + (3*g1*t^8.423)/g2^7 + t^8.436/(g1*g2^11) - t^8.45/(g1^3*g2^15) + g1^4*g2^32*t^8.494 + (3*t^8.516)/(g1*g2^15) + g2^24*t^8.521 + 2*g1^4*g2^28*t^8.574 + 2*g1^4*g2^24*t^8.654 + g1^2*g2^20*t^8.667 + g2^16*t^8.681 + 4*g1^4*g2^20*t^8.734 + g1^2*g2^16*t^8.747 + 3*g1^4*g2^16*t^8.814 + 2*g1^2*g2^12*t^8.827 - 4*g2^8*t^8.84 + 4*g1^4*g2^12*t^8.893 + 2*g1^2*g2^8*t^8.907 - g2^4*t^8.92 + 2*g1^4*g2^8*t^8.973 + 4*g1^2*g2^4*t^8.987 - (g2^2*t^4.46)/y - (g1*g2^11*t^6.564)/y - (g1*g2^7*t^6.644)/y + (g1^2*g2^14*t^7.287)/y - (g2^10*t^7.3)/y + (g1^2*g2^10*t^7.367)/y + (g2^6*t^7.38)/y + (g1^2*g2^6*t^7.447)/y + (g2^2*t^7.46)/y + (2*t^7.62)/(g2^6*y) + (g1*g2^17*t^7.944)/y + (g1*g2^13*t^8.024)/y + (2*g1*g2^9*t^8.104)/y + (3*g1*g2^5*t^8.183)/y + (g2*t^8.197)/(g1*y) + (3*g1*g2*t^8.263)/y + t^8.277/(g1*g2^3*y) + (2*g1*t^8.343)/(g2^3*y) + (2*t^8.356)/(g1*g2^7*y) + (2*t^8.436)/(g1*g2^11*y) - (g1^2*g2^20*t^8.667)/y - (g1^2*g2^16*t^8.747)/y + (g2^8*t^8.84)/y + (2*g1^2*g2^8*t^8.907)/y + (2*g2^4*t^8.92)/y + (2*g1^2*g2^4*t^8.987)/y - g2^2*t^4.46*y - g1*g2^11*t^6.564*y - g1*g2^7*t^6.644*y + g1^2*g2^14*t^7.287*y - g2^10*t^7.3*y + g1^2*g2^10*t^7.367*y + g2^6*t^7.38*y + g1^2*g2^6*t^7.447*y + g2^2*t^7.46*y + (2*t^7.62*y)/g2^6 + g1*g2^17*t^7.944*y + g1*g2^13*t^8.024*y + 2*g1*g2^9*t^8.104*y + 3*g1*g2^5*t^8.183*y + (g2*t^8.197*y)/g1 + 3*g1*g2*t^8.263*y + (t^8.277*y)/(g1*g2^3) + (2*g1*t^8.343*y)/g2^3 + (2*t^8.356*y)/(g1*g2^7) + (2*t^8.436*y)/(g1*g2^11) - g1^2*g2^20*t^8.667*y - g1^2*g2^16*t^8.747*y + g2^8*t^8.84*y + 2*g1^2*g2^8*t^8.907*y + 2*g2^4*t^8.92*y + 2*g1^2*g2^4*t^8.987*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55048 ${}M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{1}q_{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ 0.6266 0.8141 0.7697 [M:[1.0275, 0.945, 1.0, 1.0275, 0.7294, 0.7019], q:[0.5413, 0.5138], qb:[0.7569, 0.2431], phi:[0.4862]] t^2.106 + t^2.188 + t^2.271 + t^2.353 + t^2.835 + t^3. + 2*t^3.083 + t^3.729 + t^3.812 + t^4.211 + t^4.294 + 2*t^4.376 + 2*t^4.459 + 3*t^4.541 + 2*t^4.624 + 2*t^4.706 + t^4.941 + t^5.023 + t^5.106 + 3*t^5.188 + 3*t^5.271 + 3*t^5.353 + 2*t^5.436 + t^5.67 + 2*t^5.835 + 2*t^5.917 - t^6. - t^4.459/y - t^4.459*y detail
55019 ${}M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{1}q_{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{6}q_{1}\tilde{q}_{1}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ 0.6261 0.8118 0.7712 [M:[1.0287, 0.9427, 1.0, 1.0287, 0.7428, 0.7142], q:[0.5287, 0.5287], qb:[0.7572, 0.2428], phi:[0.4857]] t^2.143 + t^2.229 + 2*t^2.314 + t^2.828 + t^3. + 2*t^3.086 + t^3.771 + t^3.857 + t^4.285 + t^4.371 + 3*t^4.457 + 2*t^4.543 + 6*t^4.629 + t^4.971 + t^5.057 + t^5.143 + 3*t^5.229 + 4*t^5.314 + 4*t^5.4 + t^5.656 + t^5.828 + 2*t^5.914 - 3*t^6. - t^4.457/y - t^4.457*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46772 SU2adj1nf2 ${}M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{1}q_{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{1}\tilde{q}_{2}$ 0.6062 0.7757 0.7814 [M:[1.0213, 0.9573, 1.0, 1.0213, 0.7341], q:[0.5319, 0.5108], qb:[0.7553, 0.2447], phi:[0.4893]] t^2.202 + t^2.266 + t^2.33 + t^2.872 + t^3. + 2*t^3.064 + t^3.734 + t^3.798 + t^3.862 + t^4.405 + t^4.469 + t^4.532 + 2*t^4.533 + 2*t^4.596 + 2*t^4.659 + t^5.074 + t^5.202 + 3*t^5.266 + 3*t^5.33 + 2*t^5.394 + t^5.744 + t^5.872 + t^5.936 - 3*t^6. - t^4.468/y - t^4.468*y detail