Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1878 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6q_1\tilde{q}_1$ 0.6266 0.8144 0.7694 [X:[], M:[1.0, 1.0266, 0.9468, 1.0266, 0.7278, 0.7012], q:[0.7567, 0.2433], qb:[0.5421, 0.5111], phi:[0.4867]] [X:[], M:[[0, 0], [4, 4], [-8, -8], [4, 4], [-5, 3], [-9, -1]], q:[[1, 1], [-1, -1]], qb:[[8, 0], [0, 8]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ M_5$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ M_3$, $ M_1$, $ M_2$, $ M_4$, $ \phi_1q_2\tilde{q}_2$, $ q_1\tilde{q}_2$, $ M_6^2$, $ M_5M_6$, $ M_5^2$, $ M_6q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ \phi_1q_1q_2$, $ M_6q_2\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ M_5q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ M_3M_6$, $ M_3M_5$, $ M_1M_6$, $ M_1M_5$, $ M_2M_6$, $ M_4M_6$, $ M_2M_5$, $ M_4M_5$, $ \phi_1q_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ M_2q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ M_3^2$, $ M_6\phi_1q_2\tilde{q}_2$, $ M_1M_3$, $ M_6q_1\tilde{q}_2$, $ M_5\phi_1q_2\tilde{q}_2$, $ M_2M_3$, $ M_3M_4$, $ M_5q_1\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_2^2$ . -3 t^2.1 + t^2.18 + t^2.26 + t^2.36 + t^2.84 + t^3. + 2*t^3.08 + t^3.72 + t^3.8 + t^4.21 + t^4.29 + 2*t^4.37 + t^4.45 + t^4.46 + 2*t^4.53 + t^4.54 + 2*t^4.62 + 2*t^4.71 + t^4.94 + t^5.02 + t^5.1 + 3*t^5.18 + 3*t^5.26 + 2*t^5.34 + t^5.36 + 2*t^5.44 + t^5.68 + t^5.83 + t^5.84 + t^5.91 + t^5.92 + 2*t^5.99 - 3*t^6. + t^6.07 + 2*t^6.08 - t^6.09 + 3*t^6.16 + t^6.31 + t^6.39 + 2*t^6.47 + 2*t^6.55 + t^6.56 + 3*t^6.63 + t^6.64 - t^6.66 + 2*t^6.71 + 2*t^6.72 - t^6.74 + 2*t^6.79 + 3*t^6.8 + 4*t^6.88 + 2*t^6.98 + t^7.05 + 2*t^7.07 + t^7.13 + 2*t^7.21 + 3*t^7.29 + 4*t^7.37 + 5*t^7.45 - t^7.46 + 4*t^7.53 + 4*t^7.61 + 2*t^7.62 - t^7.63 + 3*t^7.7 + t^7.71 + t^7.78 + 3*t^7.79 + t^7.86 + t^7.93 + t^7.94 + t^8.01 + 2*t^8.02 + 2*t^8.09 - 2*t^8.1 + 2*t^8.17 - 2*t^8.18 - t^8.2 + 3*t^8.25 - 2*t^8.28 + 2*t^8.33 + 4*t^8.34 - 5*t^8.36 + t^8.41 + 3*t^8.42 + t^8.44 - t^8.45 + t^8.49 + 4*t^8.52 + 2*t^8.57 + 2*t^8.65 + t^8.67 + t^8.68 + 4*t^8.73 + t^8.75 + 3*t^8.81 + 2*t^8.83 - 4*t^8.84 + 4*t^8.89 + 2*t^8.91 - t^8.92 + 2*t^8.97 + 4*t^8.99 - t^4.46/y - t^6.56/y - t^6.64/y + t^7.29/y - t^7.3/y + t^7.37/y + t^7.38/y + t^7.45/y + t^7.46/y + (2*t^7.62)/y + t^7.94/y + t^8.02/y + (2*t^8.1)/y + (3*t^8.18)/y + t^8.2/y + (3*t^8.26)/y + t^8.28/y + (2*t^8.34)/y + (2*t^8.36)/y + (2*t^8.44)/y - t^8.67/y - t^8.75/y + t^8.84/y + (2*t^8.91)/y + (2*t^8.92)/y + (2*t^8.99)/y - t^4.46*y - t^6.56*y - t^6.64*y + t^7.29*y - t^7.3*y + t^7.37*y + t^7.38*y + t^7.45*y + t^7.46*y + 2*t^7.62*y + t^7.94*y + t^8.02*y + 2*t^8.1*y + 3*t^8.18*y + t^8.2*y + 3*t^8.26*y + t^8.28*y + 2*t^8.34*y + 2*t^8.36*y + 2*t^8.44*y - t^8.67*y - t^8.75*y + t^8.84*y + 2*t^8.91*y + 2*t^8.92*y + 2*t^8.99*y t^2.1/(g1^9*g2) + (g2^3*t^2.18)/g1^5 + (g2^7*t^2.26)/g1 + (g1^7*t^2.36)/g2 + t^2.84/(g1^8*g2^8) + t^3. + 2*g1^4*g2^4*t^3.08 + (g2^5*t^3.72)/g1^3 + g1*g2^9*t^3.8 + t^4.21/(g1^18*g2^2) + (g2^2*t^4.29)/g1^14 + (2*g2^6*t^4.37)/g1^10 + (g2^10*t^4.45)/g1^6 + t^4.46/(g1^2*g2^2) + (2*g2^14*t^4.53)/g1^2 + g1^2*g2^2*t^4.54 + 2*g1^6*g2^6*t^4.62 + (2*g1^14*t^4.71)/g2^2 + t^4.94/(g1^17*g2^9) + t^5.02/(g1^13*g2^5) + t^5.1/(g1^9*g2) + (3*g2^3*t^5.18)/g1^5 + (3*g2^7*t^5.26)/g1 + 2*g1^3*g2^11*t^5.34 + (g1^7*t^5.36)/g2 + 2*g1^11*g2^3*t^5.44 + t^5.68/(g1^16*g2^16) + (g2^4*t^5.83)/g1^12 + t^5.84/(g1^8*g2^8) + (g2^8*t^5.91)/g1^8 + t^5.92/(g1^4*g2^4) + (2*g2^12*t^5.99)/g1^4 - 3*t^6. + g2^16*t^6.07 + 2*g1^4*g2^4*t^6.08 - (g1^8*t^6.09)/g2^8 + 3*g1^8*g2^8*t^6.16 + t^6.31/(g1^27*g2^3) + (g2*t^6.39)/g1^23 + (2*g2^5*t^6.47)/g1^19 + (2*g2^9*t^6.55)/g1^15 + t^6.56/(g1^11*g2^3) + (3*g2^13*t^6.63)/g1^11 + (g2*t^6.64)/g1^7 - t^6.66/(g1^3*g2^11) + (2*g2^17*t^6.71)/g1^7 + (2*g2^5*t^6.72)/g1^3 - (g1*t^6.74)/g2^7 + (2*g2^21*t^6.79)/g1^3 + 3*g1*g2^9*t^6.8 + 4*g1^5*g2^13*t^6.88 + 2*g1^13*g2^5*t^6.98 + t^7.05/(g1^26*g2^10) + (2*g1^21*t^7.07)/g2^3 + t^7.13/(g1^22*g2^6) + (2*t^7.21)/(g1^18*g2^2) + (3*g2^2*t^7.29)/g1^14 + (4*g2^6*t^7.37)/g1^10 + (5*g2^10*t^7.45)/g1^6 - t^7.46/(g1^2*g2^2) + (4*g2^14*t^7.53)/g1^2 + 4*g1^2*g2^18*t^7.61 + 2*g1^6*g2^6*t^7.62 - (g1^10*t^7.63)/g2^6 + 3*g1^10*g2^10*t^7.7 + (g1^14*t^7.71)/g2^2 + t^7.78/(g1^25*g2^17) + 3*g1^18*g2^2*t^7.79 + t^7.86/(g1^21*g2^13) + (g2^3*t^7.93)/g1^21 + t^7.94/(g1^17*g2^9) + (g2^7*t^8.01)/g1^17 + (2*t^8.02)/(g1^13*g2^5) + (2*g2^11*t^8.09)/g1^13 - (2*t^8.1)/(g1^9*g2) + (2*g2^15*t^8.17)/g1^9 - (2*g2^3*t^8.18)/g1^5 - t^8.2/(g1*g2^9) + (3*g2^19*t^8.25)/g1^5 - (2*g1^3*t^8.28)/g2^5 + (2*g2^23*t^8.33)/g1 + 4*g1^3*g2^11*t^8.34 - (5*g1^7*t^8.36)/g2 + t^8.41/(g1^36*g2^4) + 3*g1^7*g2^15*t^8.42 + g1^11*g2^3*t^8.44 - (g1^15*t^8.45)/g2^9 + t^8.49/g1^32 + t^8.52/(g1^24*g2^24) + 3*g1^15*g2^7*t^8.52 + (2*g2^4*t^8.57)/g1^28 + (2*g2^8*t^8.65)/g1^24 + t^8.67/(g1^20*g2^4) + t^8.68/(g1^16*g2^16) + (4*g2^12*t^8.73)/g1^20 + t^8.75/g1^16 + (3*g2^16*t^8.81)/g1^16 + (2*g2^4*t^8.83)/g1^12 - (4*t^8.84)/(g1^8*g2^8) + (4*g2^20*t^8.89)/g1^12 + (2*g2^8*t^8.91)/g1^8 - t^8.92/(g1^4*g2^4) + (2*g2^24*t^8.97)/g1^8 + (4*g2^12*t^8.99)/g1^4 - t^4.46/(g1^2*g2^2*y) - t^6.56/(g1^11*g2^3*y) - (g2*t^6.64)/(g1^7*y) + (g2^2*t^7.29)/(g1^14*y) - t^7.3/(g1^10*g2^10*y) + (g2^6*t^7.37)/(g1^10*y) + t^7.38/(g1^6*g2^6*y) + (g2^10*t^7.45)/(g1^6*y) + t^7.46/(g1^2*g2^2*y) + (2*g1^6*g2^6*t^7.62)/y + t^7.94/(g1^17*g2^9*y) + t^8.02/(g1^13*g2^5*y) + (2*t^8.1)/(g1^9*g2*y) + (3*g2^3*t^8.18)/(g1^5*y) + t^8.2/(g1*g2^9*y) + (3*g2^7*t^8.26)/(g1*y) + (g1^3*t^8.28)/(g2^5*y) + (2*g1^3*g2^11*t^8.34)/y + (2*g1^7*t^8.36)/(g2*y) + (2*g1^11*g2^3*t^8.44)/y - t^8.67/(g1^20*g2^4*y) - t^8.75/(g1^16*y) + t^8.84/(g1^8*g2^8*y) + (2*g2^8*t^8.91)/(g1^8*y) + (2*t^8.92)/(g1^4*g2^4*y) + (2*g2^12*t^8.99)/(g1^4*y) - (t^4.46*y)/(g1^2*g2^2) - (t^6.56*y)/(g1^11*g2^3) - (g2*t^6.64*y)/g1^7 + (g2^2*t^7.29*y)/g1^14 - (t^7.3*y)/(g1^10*g2^10) + (g2^6*t^7.37*y)/g1^10 + (t^7.38*y)/(g1^6*g2^6) + (g2^10*t^7.45*y)/g1^6 + (t^7.46*y)/(g1^2*g2^2) + 2*g1^6*g2^6*t^7.62*y + (t^7.94*y)/(g1^17*g2^9) + (t^8.02*y)/(g1^13*g2^5) + (2*t^8.1*y)/(g1^9*g2) + (3*g2^3*t^8.18*y)/g1^5 + (t^8.2*y)/(g1*g2^9) + (3*g2^7*t^8.26*y)/g1 + (g1^3*t^8.28*y)/g2^5 + 2*g1^3*g2^11*t^8.34*y + (2*g1^7*t^8.36*y)/g2 + 2*g1^11*g2^3*t^8.44*y - (t^8.67*y)/(g1^20*g2^4) - (t^8.75*y)/g1^16 + (t^8.84*y)/(g1^8*g2^8) + (2*g2^8*t^8.91*y)/g1^8 + (2*t^8.92*y)/(g1^4*g2^4) + (2*g2^12*t^8.99*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2893 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6q_1\tilde{q}_1$ + $ M_5q_1\tilde{q}_2$ 0.6266 0.8141 0.7697 [X:[], M:[1.0, 1.0275, 0.945, 1.0275, 0.7294, 0.7019], q:[0.7569, 0.2431], qb:[0.5413, 0.5138], phi:[0.4862]] t^2.11 + t^2.19 + t^2.27 + t^2.35 + t^2.83 + t^3. + 2*t^3.08 + t^3.73 + t^3.81 + t^4.21 + t^4.29 + 2*t^4.38 + 2*t^4.46 + 3*t^4.54 + 2*t^4.62 + 2*t^4.71 + t^4.94 + t^5.02 + t^5.11 + 3*t^5.19 + 3*t^5.27 + 3*t^5.35 + 2*t^5.44 + t^5.67 + 2*t^5.83 + 2*t^5.92 - t^6. - t^4.46/y - t^4.46*y detail
2892 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6q_1\tilde{q}_1$ + $ M_6\phi_1q_2\tilde{q}_2$ 0.625 0.8101 0.7715 [X:[], M:[1.0, 1.0193, 0.9615, 1.0193, 0.7548, 0.7356], q:[0.7548, 0.2452], qb:[0.5096, 0.5289], phi:[0.4904]] t^2.21 + 2*t^2.26 + t^2.32 + t^2.88 + t^3. + 2*t^3.06 + t^3.79 + t^3.85 + t^4.41 + 2*t^4.47 + 5*t^4.53 + 3*t^4.59 + 2*t^4.64 + t^5.09 + t^5.15 + t^5.21 + 4*t^5.26 + 5*t^5.32 + 2*t^5.38 + t^5.77 + t^5.88 - 2*t^6. - t^4.47/y - t^4.47*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
523 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_1$ 0.6062 0.7757 0.7814 [X:[], M:[1.0, 1.0213, 0.9573, 1.0213, 0.7341], q:[0.7553, 0.2447], qb:[0.5319, 0.5108], phi:[0.4893]] t^2.2 + t^2.27 + t^2.33 + t^2.87 + t^3. + 2*t^3.06 + t^3.73 + t^3.8 + t^3.86 + t^4.4 + t^4.47 + 3*t^4.53 + 2*t^4.6 + 2*t^4.66 + t^5.07 + t^5.2 + 3*t^5.27 + 3*t^5.33 + 2*t^5.39 + t^5.74 + t^5.87 + t^5.94 - t^6. - t^4.47/y - t^4.47*y detail