Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46926 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{2}$ | 0.6433 | 0.8468 | 0.7596 | [M:[0.7397, 0.7573, 1.0, 1.0012, 1.0012, 0.7409], q:[0.7503, 0.51], qb:[0.4924, 0.2497], phi:[0.4994]] | [M:[[1, 9], [-1, 1], [0, 0], [0, -4], [0, -4], [1, 5]], q:[[0, -1], [-1, -8]], qb:[[1, 0], [0, 1]], phi:[[0, 2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{6}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }M_{4}$, ${ }M_{5}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{6}$, ${ }M_{4}M_{6}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{5}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$ | ${}$ | -3 | t^2.219 + t^2.223 + t^2.226 + t^2.272 + t^2.279 + t^3. + 2*t^3.003 + t^3.007 + t^3.724 + t^4.438 + t^4.442 + 2*t^4.445 + t^4.449 + 2*t^4.452 + t^4.491 + t^4.495 + 2*t^4.498 + t^4.502 + 2*t^4.505 + t^4.544 + t^4.551 + 2*t^4.558 + 3*t^5.223 + 4*t^5.226 + 3*t^5.23 + t^5.233 + 2*t^5.276 + 2*t^5.279 + 2*t^5.283 + t^5.286 + t^5.944 + t^5.951 - 3*t^6. + 2*t^6.003 + 3*t^6.007 + 2*t^6.01 + t^6.014 - t^6.053 + t^6.658 + t^6.661 + 2*t^6.665 + 2*t^6.668 + 3*t^6.672 + 2*t^6.675 + 2*t^6.679 + t^6.71 + t^6.714 + 2*t^6.717 + t^6.721 + 4*t^6.724 + 2*t^6.728 + 3*t^6.731 + t^6.763 + t^6.767 + t^6.77 + 2*t^6.777 + 2*t^6.784 + t^6.816 + t^6.823 + 2*t^6.83 + 2*t^6.837 + 2*t^7.442 + 3*t^7.445 + 6*t^7.449 + 5*t^7.452 + 4*t^7.456 + 2*t^7.459 - t^7.491 + 2*t^7.495 + t^7.498 + 3*t^7.502 + 4*t^7.505 + 4*t^7.509 + 2*t^7.512 + 2*t^7.548 + t^7.555 + 2*t^7.558 + 3*t^7.562 + 2*t^7.565 + t^8.163 + t^8.17 + 2*t^8.177 - 5*t^8.219 - 3*t^8.223 - t^8.226 + 6*t^8.23 + 5*t^8.233 + 3*t^8.237 + t^8.24 - 5*t^8.272 - 2*t^8.276 - 3*t^8.279 + 3*t^8.283 + 3*t^8.286 + 2*t^8.29 + t^8.293 - t^8.325 - t^8.332 + t^8.877 + t^8.88 + 2*t^8.884 + 2*t^8.887 + 4*t^8.891 + 3*t^8.894 + 4*t^8.898 + 2*t^8.901 + 3*t^8.905 + t^8.93 + t^8.933 + 2*t^8.937 + 2*t^8.94 + 3*t^8.944 + 3*t^8.947 + 4*t^8.951 + 2*t^8.954 + 4*t^8.958 + t^8.983 + t^8.986 + t^8.99 + t^8.997 - t^4.498/y - t^6.717/y - t^6.721/y - t^6.77/y + t^7.442/y + t^7.445/y + t^7.449/y + t^7.491/y + (2*t^7.495)/y + (2*t^7.498)/y + t^7.505/y + t^7.551/y + t^8.219/y + (3*t^8.223)/y + (5*t^8.226)/y + (3*t^8.23)/y + t^8.233/y + t^8.272/y + (3*t^8.276)/y + (3*t^8.279)/y + (2*t^8.283)/y + t^8.286/y - t^8.937/y - t^8.94/y + t^8.947/y + t^8.951/y - t^8.99/y - t^8.993/y + t^8.997/y - t^4.498*y - t^6.717*y - t^6.721*y - t^6.77*y + t^7.442*y + t^7.445*y + t^7.449*y + t^7.491*y + 2*t^7.495*y + 2*t^7.498*y + t^7.505*y + t^7.551*y + t^8.219*y + 3*t^8.223*y + 5*t^8.226*y + 3*t^8.23*y + t^8.233*y + t^8.272*y + 3*t^8.276*y + 3*t^8.279*y + 2*t^8.283*y + t^8.286*y - t^8.937*y - t^8.94*y + t^8.947*y + t^8.951*y - t^8.99*y - t^8.993*y + t^8.997*y | g1*g2^9*t^2.219 + g1*g2^5*t^2.223 + g1*g2*t^2.226 + (g2*t^2.272)/g1 + t^2.279/(g1*g2^7) + t^3. + (2*t^3.003)/g2^4 + t^3.007/g2^8 + g1*g2^3*t^3.724 + g1^2*g2^18*t^4.438 + g1^2*g2^14*t^4.442 + 2*g1^2*g2^10*t^4.445 + g1^2*g2^6*t^4.449 + 2*g1^2*g2^2*t^4.452 + g2^10*t^4.491 + g2^6*t^4.495 + 2*g2^2*t^4.498 + t^4.502/g2^2 + (2*t^4.505)/g2^6 + (g2^2*t^4.544)/g1^2 + t^4.551/(g1^2*g2^6) + (2*t^4.558)/(g1^2*g2^14) + 3*g1*g2^5*t^5.223 + 4*g1*g2*t^5.226 + (3*g1*t^5.23)/g2^3 + (g1*t^5.233)/g2^7 + (2*t^5.276)/(g1*g2^3) + (2*t^5.279)/(g1*g2^7) + (2*t^5.283)/(g1*g2^11) + t^5.286/(g1*g2^15) + g1^2*g2^12*t^5.944 + g1^2*g2^4*t^5.951 - 3*t^6. + (2*t^6.003)/g2^4 + (3*t^6.007)/g2^8 + (2*t^6.01)/g2^12 + t^6.014/g2^16 - t^6.053/(g1^2*g2^8) + g1^3*g2^27*t^6.658 + g1^3*g2^23*t^6.661 + 2*g1^3*g2^19*t^6.665 + 2*g1^3*g2^15*t^6.668 + 3*g1^3*g2^11*t^6.672 + 2*g1^3*g2^7*t^6.675 + 2*g1^3*g2^3*t^6.679 + g1*g2^19*t^6.71 + g1*g2^15*t^6.714 + 2*g1*g2^11*t^6.717 + g1*g2^7*t^6.721 + 4*g1*g2^3*t^6.724 + (2*g1*t^6.728)/g2 + (3*g1*t^6.731)/g2^5 + (g2^11*t^6.763)/g1 + (g2^7*t^6.767)/g1 + (g2^3*t^6.77)/g1 + (2*t^6.777)/(g1*g2^5) + (2*t^6.784)/(g1*g2^13) + (g2^3*t^6.816)/g1^3 + t^6.823/(g1^3*g2^5) + (2*t^6.83)/(g1^3*g2^13) + (2*t^6.837)/(g1^3*g2^21) + 2*g1^2*g2^14*t^7.442 + 3*g1^2*g2^10*t^7.445 + 6*g1^2*g2^6*t^7.449 + 5*g1^2*g2^2*t^7.452 + (4*g1^2*t^7.456)/g2^2 + (2*g1^2*t^7.459)/g2^6 - g2^10*t^7.491 + 2*g2^6*t^7.495 + g2^2*t^7.498 + (3*t^7.502)/g2^2 + (4*t^7.505)/g2^6 + (4*t^7.509)/g2^10 + (2*t^7.512)/g2^14 + (2*t^7.548)/(g1^2*g2^2) + t^7.555/(g1^2*g2^10) + (2*t^7.558)/(g1^2*g2^14) + (3*t^7.562)/(g1^2*g2^18) + (2*t^7.565)/(g1^2*g2^22) + g1^3*g2^21*t^8.163 + g1^3*g2^13*t^8.17 + 2*g1^3*g2^5*t^8.177 - 5*g1*g2^9*t^8.219 - 3*g1*g2^5*t^8.223 - g1*g2*t^8.226 + (6*g1*t^8.23)/g2^3 + (5*g1*t^8.233)/g2^7 + (3*g1*t^8.237)/g2^11 + (g1*t^8.24)/g2^15 - (5*g2*t^8.272)/g1 - (2*t^8.276)/(g1*g2^3) - (3*t^8.279)/(g1*g2^7) + (3*t^8.283)/(g1*g2^11) + (3*t^8.286)/(g1*g2^15) + (2*t^8.29)/(g1*g2^19) + t^8.293/(g1*g2^23) - t^8.325/(g1^3*g2^7) - t^8.332/(g1^3*g2^15) + g1^4*g2^36*t^8.877 + g1^4*g2^32*t^8.88 + 2*g1^4*g2^28*t^8.884 + 2*g1^4*g2^24*t^8.887 + 4*g1^4*g2^20*t^8.891 + 3*g1^4*g2^16*t^8.894 + 4*g1^4*g2^12*t^8.898 + 2*g1^4*g2^8*t^8.901 + 3*g1^4*g2^4*t^8.905 + g1^2*g2^28*t^8.93 + g1^2*g2^24*t^8.933 + 2*g1^2*g2^20*t^8.937 + 2*g1^2*g2^16*t^8.94 + 3*g1^2*g2^12*t^8.944 + 3*g1^2*g2^8*t^8.947 + 4*g1^2*g2^4*t^8.951 + 2*g1^2*t^8.954 + (4*g1^2*t^8.958)/g2^4 + g2^20*t^8.983 + g2^16*t^8.986 + g2^12*t^8.99 + g2^4*t^8.997 - (g2^2*t^4.498)/y - (g1*g2^11*t^6.717)/y - (g1*g2^7*t^6.721)/y - (g2^3*t^6.77)/(g1*y) + (g1^2*g2^14*t^7.442)/y + (g1^2*g2^10*t^7.445)/y + (g1^2*g2^6*t^7.449)/y + (g2^10*t^7.491)/y + (2*g2^6*t^7.495)/y + (2*g2^2*t^7.498)/y + t^7.505/(g2^6*y) + t^7.551/(g1^2*g2^6*y) + (g1*g2^9*t^8.219)/y + (3*g1*g2^5*t^8.223)/y + (5*g1*g2*t^8.226)/y + (3*g1*t^8.23)/(g2^3*y) + (g1*t^8.233)/(g2^7*y) + (g2*t^8.272)/(g1*y) + (3*t^8.276)/(g1*g2^3*y) + (3*t^8.279)/(g1*g2^7*y) + (2*t^8.283)/(g1*g2^11*y) + t^8.286/(g1*g2^15*y) - (g1^2*g2^20*t^8.937)/y - (g1^2*g2^16*t^8.94)/y + (g1^2*g2^8*t^8.947)/y + (g1^2*g2^4*t^8.951)/y - (g2^12*t^8.99)/y - (g2^8*t^8.993)/y + (g2^4*t^8.997)/y - g2^2*t^4.498*y - g1*g2^11*t^6.717*y - g1*g2^7*t^6.721*y - (g2^3*t^6.77*y)/g1 + g1^2*g2^14*t^7.442*y + g1^2*g2^10*t^7.445*y + g1^2*g2^6*t^7.449*y + g2^10*t^7.491*y + 2*g2^6*t^7.495*y + 2*g2^2*t^7.498*y + (t^7.505*y)/g2^6 + (t^7.551*y)/(g1^2*g2^6) + g1*g2^9*t^8.219*y + 3*g1*g2^5*t^8.223*y + 5*g1*g2*t^8.226*y + (3*g1*t^8.23*y)/g2^3 + (g1*t^8.233*y)/g2^7 + (g2*t^8.272*y)/g1 + (3*t^8.276*y)/(g1*g2^3) + (3*t^8.279*y)/(g1*g2^7) + (2*t^8.283*y)/(g1*g2^11) + (t^8.286*y)/(g1*g2^15) - g1^2*g2^20*t^8.937*y - g1^2*g2^16*t^8.94*y + g1^2*g2^8*t^8.947*y + g1^2*g2^4*t^8.951*y - g2^12*t^8.99*y - g2^8*t^8.993*y + g2^4*t^8.997*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55325 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ | 0.6431 | 0.8465 | 0.7597 | [M:[0.7515, 0.7535, 1.0, 0.998, 0.998, 0.7495], q:[0.7495, 0.499], qb:[0.497, 0.2505], phi:[0.501]] | t^2.243 + 2*t^2.249 + t^2.254 + t^2.26 + t^2.988 + 2*t^2.994 + t^3. + t^3.746 + 2*t^4.485 + 3*t^4.491 + 5*t^4.497 + 3*t^4.503 + 3*t^4.509 + t^4.515 + t^4.521 + t^5.231 + 4*t^5.237 + 6*t^5.243 + 5*t^5.249 + 2*t^5.254 + t^5.976 + 2*t^5.982 + 4*t^5.988 + 2*t^5.994 - 2*t^6. - t^4.503/y - t^4.503*y | detail | |
55349 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$ | 0.6431 | 0.8459 | 0.7603 | [M:[0.7429, 0.7469, 1.0, 1.0041, 1.0041, 0.7469], q:[0.751, 0.5061], qb:[0.502, 0.249], phi:[0.498]] | t^2.229 + 2*t^2.241 + t^2.253 + t^2.265 + t^3. + 2*t^3.012 + t^3.024 + t^3.747 + t^4.457 + 2*t^4.469 + 4*t^4.482 + 3*t^4.494 + 4*t^4.506 + 2*t^4.518 + 2*t^4.531 + 3*t^5.241 + 6*t^5.253 + 5*t^5.265 + 3*t^5.278 + t^5.29 + t^5.976 - 2*t^6. - t^4.494/y - t^4.494*y | detail | |
55257 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}X_{1}$ | 0.6053 | 0.7788 | 0.7773 | [X:[1.3875], M:[0.6125, 0.7001, 1.0, 1.075, 1.075, 0.6875], q:[0.7687, 0.6188], qb:[0.5312, 0.2313], phi:[0.4625]] | t^2.062 + t^2.1 + t^2.287 + t^2.55 + t^3. + 2*t^3.225 + t^3.45 + t^3.675 + t^4.125 + 2*t^4.163 + t^4.2 + t^4.35 + t^4.388 + 2*t^4.575 + t^4.612 + t^4.65 + t^4.837 + t^5.062 + 2*t^5.1 + 3*t^5.287 + 2*t^5.325 + 3*t^5.512 + 2*t^5.55 + t^5.737 + 2*t^5.775 + t^5.962 - 2*t^6. - t^4.388/y - t^4.388*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46575 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}\phi_{1}^{2}$ | 0.624 | 0.8116 | 0.7689 | [M:[0.7507, 0.7507, 1.0, 0.9995, 0.9995], q:[0.7499, 0.4995], qb:[0.4995, 0.2501], phi:[0.5003]] | 2*t^2.249 + 2*t^2.252 + t^2.997 + 2*t^2.998 + t^3. + 2*t^3.75 + 6*t^4.498 + 4*t^4.501 + 3*t^4.504 + 2*t^5.246 + 4*t^5.247 + 4*t^5.249 + 4*t^5.25 + t^5.994 + 2*t^5.995 + 3*t^5.997 + 5*t^5.998 - 5*t^6. - t^4.501/y - t^4.501*y | detail |