Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3462 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ + $ M_7q_1\tilde{q}_1$ + $ M_3M_8$ 0.6433 0.8468 0.7596 [X:[], M:[1.0, 1.0012, 0.9977, 1.0012, 0.7409, 0.7573, 0.7397, 1.0023], q:[0.7503, 0.2497], qb:[0.51, 0.4924], phi:[0.4994]] [X:[], M:[[0, 0], [4, 4], [-8, -8], [4, 4], [-5, 3], [-1, -9], [-9, -1], [8, 8]], q:[[1, 1], [-1, -1]], qb:[[8, 0], [0, 8]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_7$, $ M_5$, $ q_2\tilde{q}_2$, $ M_6$, $ q_2\tilde{q}_1$, $ M_1$, $ M_2$, $ M_4$, $ M_2$, $ M_4$, $ M_8$, $ \phi_1q_2\tilde{q}_2$, $ M_7^2$, $ M_5M_7$, $ M_5^2$, $ M_7q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ M_6M_7$, $ M_5M_6$, $ \phi_1q_1q_2$, $ M_7q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_6^2$, $ M_6q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ M_1M_5$, $ M_2M_7$, $ M_4M_7$, $ M_2M_5$, $ M_4M_5$, $ M_7M_8$, $ \phi_1q_1\tilde{q}_2$, $ M_5M_8$, $ M_2q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_8q_2\tilde{q}_2$, $ M_2M_6$, $ M_4M_6$, $ M_6M_8$, $ \phi_1q_1\tilde{q}_1$, $ M_2q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ M_8q_2\tilde{q}_1$, $ M_7\phi_1q_2\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_2^2$ $M_1M_2$, $ M_1M_4$, $ M_6\phi_1q_2\tilde{q}_2$ -1 2*t^2.22 + t^2.23 + t^2.27 + t^2.28 + 3*t^3. + t^3.01 + t^3.72 + 2*t^4.44 + 5*t^4.45 + 2*t^4.49 + 3*t^4.5 + 2*t^4.51 + t^4.54 + t^4.55 + 2*t^4.56 + 3*t^5.22 + 8*t^5.23 + 6*t^5.28 + t^5.29 + t^5.94 + t^5.95 - t^6. + 6*t^6.01 - t^6.05 + 4*t^6.66 + 5*t^6.67 + 4*t^6.68 + 2*t^6.71 + 7*t^6.72 + 5*t^6.73 + t^6.76 + 2*t^6.77 + 4*t^6.78 + 2*t^6.82 + 2*t^6.83 + 2*t^6.84 + 2*t^7.44 + 14*t^7.45 + 6*t^7.46 + t^7.49 + 4*t^7.5 + 10*t^7.51 + 3*t^7.55 + 5*t^7.56 + 2*t^7.57 + t^8.16 + t^8.17 + 2*t^8.18 - 8*t^8.22 + 10*t^8.23 + 4*t^8.24 - 5*t^8.27 - 2*t^8.28 + 6*t^8.29 - t^8.32 - t^8.33 + 4*t^8.88 + 9*t^8.89 + 9*t^8.9 + 2*t^8.93 + 7*t^8.94 + 9*t^8.95 + 4*t^8.96 + t^8.98 + 2*t^8.99 - t^4.5/y - (2*t^6.72)/y - t^6.77/y + t^7.44/y + (2*t^7.45)/y + (3*t^7.49)/y + (2*t^7.5)/y + t^7.51/y + t^7.55/y + (4*t^8.22)/y + (9*t^8.23)/y + t^8.27/y + (8*t^8.28)/y + t^8.29/y - (2*t^8.94)/y + (2*t^8.95)/y - (2*t^8.99)/y - t^4.5*y - 2*t^6.72*y - t^6.77*y + t^7.44*y + 2*t^7.45*y + 3*t^7.49*y + 2*t^7.5*y + t^7.51*y + t^7.55*y + 4*t^8.22*y + 9*t^8.23*y + t^8.27*y + 8*t^8.28*y + t^8.29*y - 2*t^8.94*y + 2*t^8.95*y - 2*t^8.99*y t^2.22/(g1^9*g2) + (g2^3*t^2.22)/g1^5 + (g2^7*t^2.23)/g1 + t^2.27/(g1*g2^9) + (g1^7*t^2.28)/g2 + t^3. + 2*g1^4*g2^4*t^3. + g1^8*g2^8*t^3.01 + (g2^5*t^3.72)/g1^3 + t^4.44/(g1^18*g2^2) + (g2^2*t^4.44)/g1^14 + (2*g2^6*t^4.45)/g1^10 + (g2^10*t^4.45)/g1^6 + (2*g2^14*t^4.45)/g1^2 + t^4.49/(g1^10*g2^10) + t^4.49/(g1^6*g2^6) + (2*t^4.5)/(g1^2*g2^2) + g1^2*g2^2*t^4.5 + 2*g1^6*g2^6*t^4.51 + t^4.54/(g1^2*g2^18) + (g1^6*t^4.55)/g2^10 + (2*g1^14*t^4.56)/g2^2 + (3*g2^3*t^5.22)/g1^5 + (4*g2^7*t^5.23)/g1 + 3*g1^3*g2^11*t^5.23 + g1^7*g2^15*t^5.23 + (2*g1^3*t^5.28)/g2^5 + (2*g1^7*t^5.28)/g2 + 2*g1^11*g2^3*t^5.28 + g1^15*g2^7*t^5.29 + (g2^4*t^5.94)/g1^12 + (g2^12*t^5.95)/g1^4 - 3*t^6. + 2*g1^4*g2^4*t^6. + 3*g1^8*g2^8*t^6.01 + 2*g1^12*g2^12*t^6.01 + g1^16*g2^16*t^6.01 - (g1^8*t^6.05)/g2^8 + t^6.66/(g1^27*g2^3) + (g2*t^6.66)/g1^23 + (2*g2^5*t^6.66)/g1^19 + (2*g2^9*t^6.67)/g1^15 + (3*g2^13*t^6.67)/g1^11 + (2*g2^17*t^6.68)/g1^7 + (2*g2^21*t^6.68)/g1^3 + t^6.71/(g1^19*g2^11) + t^6.71/(g1^15*g2^7) + (2*t^6.72)/(g1^11*g2^3) + (g2*t^6.72)/g1^7 + (4*g2^5*t^6.72)/g1^3 + 2*g1*g2^9*t^6.73 + 3*g1^5*g2^13*t^6.73 + t^6.76/(g1^11*g2^19) + t^6.77/(g1^7*g2^15) + t^6.77/(g1^3*g2^11) + (2*g1^5*t^6.78)/g2^3 + 2*g1^13*g2^5*t^6.78 + t^6.82/(g1^3*g2^27) + (g1^5*t^6.82)/g2^19 + (2*g1^13*t^6.83)/g2^11 + (2*g1^21*t^6.84)/g2^3 + (2*g2^2*t^7.44)/g1^14 + (3*g2^6*t^7.45)/g1^10 + (6*g2^10*t^7.45)/g1^6 + (5*g2^14*t^7.45)/g1^2 + 4*g1^2*g2^18*t^7.46 + 2*g1^6*g2^22*t^7.46 - t^7.49/(g1^10*g2^10) + (2*t^7.49)/(g1^6*g2^6) + t^7.5/(g1^2*g2^2) + 3*g1^2*g2^2*t^7.5 + 4*g1^6*g2^6*t^7.51 + 4*g1^10*g2^10*t^7.51 + 2*g1^14*g2^14*t^7.51 + (2*g1^2*t^7.55)/g2^14 + (g1^10*t^7.55)/g2^6 + (2*g1^14*t^7.56)/g2^2 + 3*g1^18*g2^2*t^7.56 + 2*g1^22*g2^6*t^7.57 + (g2^3*t^8.16)/g1^21 + (g2^11*t^8.17)/g1^13 + (2*g2^19*t^8.18)/g1^5 - (5*t^8.22)/(g1^9*g2) - (3*g2^3*t^8.22)/g1^5 - (g2^7*t^8.23)/g1 + 6*g1^3*g2^11*t^8.23 + 5*g1^7*g2^15*t^8.23 + 3*g1^11*g2^19*t^8.24 + g1^15*g2^23*t^8.24 - (5*t^8.27)/(g1*g2^9) - (2*g1^3*t^8.28)/g2^5 - (3*g1^7*t^8.28)/g2 + 3*g1^11*g2^3*t^8.28 + 3*g1^15*g2^7*t^8.29 + 2*g1^19*g2^11*t^8.29 + g1^23*g2^15*t^8.29 - (g1^7*t^8.32)/g2^17 - (g1^15*t^8.33)/g2^9 + t^8.88/g1^32 + t^8.88/(g1^36*g2^4) + (2*g2^4*t^8.88)/g1^28 + (2*g2^8*t^8.89)/g1^24 + (4*g2^12*t^8.89)/g1^20 + (3*g2^16*t^8.89)/g1^16 + (4*g2^20*t^8.9)/g1^12 + (2*g2^24*t^8.9)/g1^8 + (3*g2^28*t^8.9)/g1^4 + t^8.93/(g1^28*g2^12) + t^8.93/(g1^24*g2^8) + (2*t^8.94)/g1^16 + (2*t^8.94)/(g1^20*g2^4) + (3*g2^4*t^8.94)/g1^12 + (3*g2^8*t^8.95)/g1^8 + (4*g2^12*t^8.95)/g1^4 + 2*g2^16*t^8.95 + 4*g1^4*g2^20*t^8.96 + t^8.98/(g1^20*g2^20) + t^8.99/(g1^16*g2^16) + t^8.99/(g1^12*g2^12) - t^4.5/(g1^2*g2^2*y) - t^6.72/(g1^11*g2^3*y) - (g2*t^6.72)/(g1^7*y) - t^6.77/(g1^3*g2^11*y) + (g2^2*t^7.44)/(g1^14*y) + (g2^6*t^7.45)/(g1^10*y) + (g2^10*t^7.45)/(g1^6*y) + t^7.49/(g1^10*g2^10*y) + (2*t^7.49)/(g1^6*g2^6*y) + (2*t^7.5)/(g1^2*g2^2*y) + (g1^6*g2^6*t^7.51)/y + (g1^6*t^7.55)/(g2^10*y) + t^8.22/(g1^9*g2*y) + (3*g2^3*t^8.22)/(g1^5*y) + (5*g2^7*t^8.23)/(g1*y) + (3*g1^3*g2^11*t^8.23)/y + (g1^7*g2^15*t^8.23)/y + t^8.27/(g1*g2^9*y) + (3*g1^3*t^8.28)/(g2^5*y) + (3*g1^7*t^8.28)/(g2*y) + (2*g1^11*g2^3*t^8.28)/y + (g1^15*g2^7*t^8.29)/y - t^8.94/(g1^16*y) - t^8.94/(g1^20*g2^4*y) + (g2^8*t^8.95)/(g1^8*y) + (g2^12*t^8.95)/(g1^4*y) - t^8.99/(g1^12*g2^12*y) - t^8.99/(g1^8*g2^8*y) - (t^4.5*y)/(g1^2*g2^2) - (t^6.72*y)/(g1^11*g2^3) - (g2*t^6.72*y)/g1^7 - (t^6.77*y)/(g1^3*g2^11) + (g2^2*t^7.44*y)/g1^14 + (g2^6*t^7.45*y)/g1^10 + (g2^10*t^7.45*y)/g1^6 + (t^7.49*y)/(g1^10*g2^10) + (2*t^7.49*y)/(g1^6*g2^6) + (2*t^7.5*y)/(g1^2*g2^2) + g1^6*g2^6*t^7.51*y + (g1^6*t^7.55*y)/g2^10 + (t^8.22*y)/(g1^9*g2) + (3*g2^3*t^8.22*y)/g1^5 + (5*g2^7*t^8.23*y)/g1 + 3*g1^3*g2^11*t^8.23*y + g1^7*g2^15*t^8.23*y + (t^8.27*y)/(g1*g2^9) + (3*g1^3*t^8.28*y)/g2^5 + (3*g1^7*t^8.28*y)/g2 + 2*g1^11*g2^3*t^8.28*y + g1^15*g2^7*t^8.29*y - (t^8.94*y)/g1^16 - (t^8.94*y)/(g1^20*g2^4) + (g2^8*t^8.95*y)/g1^8 + (g2^12*t^8.95*y)/g1^4 - (t^8.99*y)/(g1^12*g2^12) - (t^8.99*y)/(g1^8*g2^8)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2890 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ + $ M_7q_1\tilde{q}_1$ 0.6466 0.8507 0.76 [X:[], M:[1.0, 1.0338, 0.9324, 1.0338, 0.7334, 0.7159, 0.6996], q:[0.7584, 0.2416], qb:[0.542, 0.5256], phi:[0.4831]] t^2.1 + t^2.15 + t^2.2 + t^2.3 + t^2.35 + t^2.8 + t^3. + 2*t^3.1 + t^3.75 + t^4.2 + t^4.25 + 2*t^4.3 + t^4.35 + 2*t^4.4 + 2*t^4.45 + 2*t^4.5 + t^4.55 + 2*t^4.6 + 2*t^4.65 + 2*t^4.7 + t^4.9 + t^4.95 + t^5. + t^5.1 + t^5.15 + 3*t^5.2 + 2*t^5.25 + 3*t^5.3 + t^5.35 + 2*t^5.4 + 2*t^5.45 + t^5.59 + t^5.8 + t^5.85 + 2*t^5.9 - 3*t^6. - t^4.45/y - t^4.45*y detail