Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3462 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}q_{1}\tilde{q}_{1}$ + ${ }M_{3}M_{8}$ 0.6433 0.8468 0.7596 [M:[1.0, 1.0012, 0.9977, 1.0012, 0.7409, 0.7573, 0.7397, 1.0023], q:[0.7503, 0.2497], qb:[0.51, 0.4924], phi:[0.4994]] [M:[[0, 0], [4, 4], [-8, -8], [4, 4], [-5, 3], [-1, -9], [-9, -1], [8, 8]], q:[[1, 1], [-1, -1]], qb:[[8, 0], [0, 8]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{7}$, ${ }M_{5}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{6}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }M_{2}$, ${ }M_{4}$, ${ }M_{8}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{7}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{5}^{2}$, ${ }M_{7}q_{2}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{7}q_{2}\tilde{q}_{1}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{2}M_{7}$, ${ }M_{4}M_{7}$, ${ }M_{2}M_{5}$, ${ }M_{4}M_{5}$, ${ }M_{7}M_{8}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{5}M_{8}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{8}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{6}$, ${ }M_{4}M_{6}$, ${ }M_{6}M_{8}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{8}q_{2}\tilde{q}_{1}$, ${ }M_{7}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ ${}$ -3 t^2.219 + t^2.223 + t^2.226 + t^2.272 + t^2.279 + t^3. + 2*t^3.003 + t^3.007 + t^3.724 + t^4.438 + t^4.442 + 2*t^4.445 + t^4.449 + 2*t^4.452 + t^4.491 + t^4.495 + 2*t^4.498 + t^4.502 + 2*t^4.505 + t^4.544 + t^4.551 + 2*t^4.558 + 3*t^5.223 + 4*t^5.226 + 3*t^5.23 + t^5.233 + 2*t^5.276 + 2*t^5.279 + 2*t^5.283 + t^5.286 + t^5.944 + t^5.951 - 3*t^6. + 2*t^6.003 + 3*t^6.007 + 2*t^6.01 + t^6.014 - t^6.053 + t^6.658 + t^6.661 + 2*t^6.665 + 2*t^6.668 + 3*t^6.672 + 2*t^6.675 + 2*t^6.679 + t^6.71 + t^6.714 + 2*t^6.717 + t^6.721 + 4*t^6.724 + 2*t^6.728 + 3*t^6.731 + t^6.763 + t^6.767 + t^6.77 + 2*t^6.777 + 2*t^6.784 + t^6.816 + t^6.823 + 2*t^6.83 + 2*t^6.837 + 2*t^7.442 + 3*t^7.445 + 6*t^7.449 + 5*t^7.452 + 4*t^7.456 + 2*t^7.459 - t^7.491 + 2*t^7.495 + t^7.498 + 3*t^7.502 + 4*t^7.505 + 4*t^7.509 + 2*t^7.512 + 2*t^7.548 + t^7.555 + 2*t^7.558 + 3*t^7.562 + 2*t^7.565 + t^8.163 + t^8.17 + 2*t^8.177 - 5*t^8.219 - 3*t^8.223 - t^8.226 + 6*t^8.23 + 5*t^8.233 + 3*t^8.237 + t^8.24 - 5*t^8.272 - 2*t^8.276 - 3*t^8.279 + 3*t^8.283 + 3*t^8.286 + 2*t^8.29 + t^8.293 - t^8.325 - t^8.332 + t^8.877 + t^8.88 + 2*t^8.884 + 2*t^8.887 + 4*t^8.891 + 3*t^8.894 + 4*t^8.898 + 2*t^8.901 + 3*t^8.905 + t^8.93 + t^8.933 + 2*t^8.937 + 2*t^8.94 + 3*t^8.944 + 3*t^8.947 + 4*t^8.951 + 2*t^8.954 + 4*t^8.958 + t^8.983 + t^8.986 + t^8.99 + t^8.997 - t^4.498/y - t^6.717/y - t^6.721/y - t^6.77/y + t^7.442/y + t^7.445/y + t^7.449/y + t^7.491/y + (2*t^7.495)/y + (2*t^7.498)/y + t^7.505/y + t^7.551/y + t^8.219/y + (3*t^8.223)/y + (5*t^8.226)/y + (3*t^8.23)/y + t^8.233/y + t^8.272/y + (3*t^8.276)/y + (3*t^8.279)/y + (2*t^8.283)/y + t^8.286/y - t^8.937/y - t^8.94/y + t^8.947/y + t^8.951/y - t^8.99/y - t^8.993/y + t^8.997/y - t^4.498*y - t^6.717*y - t^6.721*y - t^6.77*y + t^7.442*y + t^7.445*y + t^7.449*y + t^7.491*y + 2*t^7.495*y + 2*t^7.498*y + t^7.505*y + t^7.551*y + t^8.219*y + 3*t^8.223*y + 5*t^8.226*y + 3*t^8.23*y + t^8.233*y + t^8.272*y + 3*t^8.276*y + 3*t^8.279*y + 2*t^8.283*y + t^8.286*y - t^8.937*y - t^8.94*y + t^8.947*y + t^8.951*y - t^8.99*y - t^8.993*y + t^8.997*y t^2.219/(g1^9*g2) + (g2^3*t^2.223)/g1^5 + (g2^7*t^2.226)/g1 + t^2.272/(g1*g2^9) + (g1^7*t^2.279)/g2 + t^3. + 2*g1^4*g2^4*t^3.003 + g1^8*g2^8*t^3.007 + (g2^5*t^3.724)/g1^3 + t^4.438/(g1^18*g2^2) + (g2^2*t^4.442)/g1^14 + (2*g2^6*t^4.445)/g1^10 + (g2^10*t^4.449)/g1^6 + (2*g2^14*t^4.452)/g1^2 + t^4.491/(g1^10*g2^10) + t^4.495/(g1^6*g2^6) + (2*t^4.498)/(g1^2*g2^2) + g1^2*g2^2*t^4.502 + 2*g1^6*g2^6*t^4.505 + t^4.544/(g1^2*g2^18) + (g1^6*t^4.551)/g2^10 + (2*g1^14*t^4.558)/g2^2 + (3*g2^3*t^5.223)/g1^5 + (4*g2^7*t^5.226)/g1 + 3*g1^3*g2^11*t^5.23 + g1^7*g2^15*t^5.233 + (2*g1^3*t^5.276)/g2^5 + (2*g1^7*t^5.279)/g2 + 2*g1^11*g2^3*t^5.283 + g1^15*g2^7*t^5.286 + (g2^4*t^5.944)/g1^12 + (g2^12*t^5.951)/g1^4 - 3*t^6. + 2*g1^4*g2^4*t^6.003 + 3*g1^8*g2^8*t^6.007 + 2*g1^12*g2^12*t^6.01 + g1^16*g2^16*t^6.014 - (g1^8*t^6.053)/g2^8 + t^6.658/(g1^27*g2^3) + (g2*t^6.661)/g1^23 + (2*g2^5*t^6.665)/g1^19 + (2*g2^9*t^6.668)/g1^15 + (3*g2^13*t^6.672)/g1^11 + (2*g2^17*t^6.675)/g1^7 + (2*g2^21*t^6.679)/g1^3 + t^6.71/(g1^19*g2^11) + t^6.714/(g1^15*g2^7) + (2*t^6.717)/(g1^11*g2^3) + (g2*t^6.721)/g1^7 + (4*g2^5*t^6.724)/g1^3 + 2*g1*g2^9*t^6.728 + 3*g1^5*g2^13*t^6.731 + t^6.763/(g1^11*g2^19) + t^6.767/(g1^7*g2^15) + t^6.77/(g1^3*g2^11) + (2*g1^5*t^6.777)/g2^3 + 2*g1^13*g2^5*t^6.784 + t^6.816/(g1^3*g2^27) + (g1^5*t^6.823)/g2^19 + (2*g1^13*t^6.83)/g2^11 + (2*g1^21*t^6.837)/g2^3 + (2*g2^2*t^7.442)/g1^14 + (3*g2^6*t^7.445)/g1^10 + (6*g2^10*t^7.449)/g1^6 + (5*g2^14*t^7.452)/g1^2 + 4*g1^2*g2^18*t^7.456 + 2*g1^6*g2^22*t^7.459 - t^7.491/(g1^10*g2^10) + (2*t^7.495)/(g1^6*g2^6) + t^7.498/(g1^2*g2^2) + 3*g1^2*g2^2*t^7.502 + 4*g1^6*g2^6*t^7.505 + 4*g1^10*g2^10*t^7.509 + 2*g1^14*g2^14*t^7.512 + (2*g1^2*t^7.548)/g2^14 + (g1^10*t^7.555)/g2^6 + (2*g1^14*t^7.558)/g2^2 + 3*g1^18*g2^2*t^7.562 + 2*g1^22*g2^6*t^7.565 + (g2^3*t^8.163)/g1^21 + (g2^11*t^8.17)/g1^13 + (2*g2^19*t^8.177)/g1^5 - (5*t^8.219)/(g1^9*g2) - (3*g2^3*t^8.223)/g1^5 - (g2^7*t^8.226)/g1 + 6*g1^3*g2^11*t^8.23 + 5*g1^7*g2^15*t^8.233 + 3*g1^11*g2^19*t^8.237 + g1^15*g2^23*t^8.24 - (5*t^8.272)/(g1*g2^9) - (2*g1^3*t^8.276)/g2^5 - (3*g1^7*t^8.279)/g2 + 3*g1^11*g2^3*t^8.283 + 3*g1^15*g2^7*t^8.286 + 2*g1^19*g2^11*t^8.29 + g1^23*g2^15*t^8.293 - (g1^7*t^8.325)/g2^17 - (g1^15*t^8.332)/g2^9 + t^8.877/(g1^36*g2^4) + t^8.88/g1^32 + (2*g2^4*t^8.884)/g1^28 + (2*g2^8*t^8.887)/g1^24 + (4*g2^12*t^8.891)/g1^20 + (3*g2^16*t^8.894)/g1^16 + (4*g2^20*t^8.898)/g1^12 + (2*g2^24*t^8.901)/g1^8 + (3*g2^28*t^8.905)/g1^4 + t^8.93/(g1^28*g2^12) + t^8.933/(g1^24*g2^8) + (2*t^8.937)/(g1^20*g2^4) + (2*t^8.94)/g1^16 + (3*g2^4*t^8.944)/g1^12 + (3*g2^8*t^8.947)/g1^8 + (4*g2^12*t^8.951)/g1^4 + 2*g2^16*t^8.954 + 4*g1^4*g2^20*t^8.958 + t^8.983/(g1^20*g2^20) + t^8.986/(g1^16*g2^16) + t^8.99/(g1^12*g2^12) + t^8.997/(g1^4*g2^4) - t^4.498/(g1^2*g2^2*y) - t^6.717/(g1^11*g2^3*y) - (g2*t^6.721)/(g1^7*y) - t^6.77/(g1^3*g2^11*y) + (g2^2*t^7.442)/(g1^14*y) + (g2^6*t^7.445)/(g1^10*y) + (g2^10*t^7.449)/(g1^6*y) + t^7.491/(g1^10*g2^10*y) + (2*t^7.495)/(g1^6*g2^6*y) + (2*t^7.498)/(g1^2*g2^2*y) + (g1^6*g2^6*t^7.505)/y + (g1^6*t^7.551)/(g2^10*y) + t^8.219/(g1^9*g2*y) + (3*g2^3*t^8.223)/(g1^5*y) + (5*g2^7*t^8.226)/(g1*y) + (3*g1^3*g2^11*t^8.23)/y + (g1^7*g2^15*t^8.233)/y + t^8.272/(g1*g2^9*y) + (3*g1^3*t^8.276)/(g2^5*y) + (3*g1^7*t^8.279)/(g2*y) + (2*g1^11*g2^3*t^8.283)/y + (g1^15*g2^7*t^8.286)/y - t^8.937/(g1^20*g2^4*y) - t^8.94/(g1^16*y) + (g2^8*t^8.947)/(g1^8*y) + (g2^12*t^8.951)/(g1^4*y) - t^8.99/(g1^12*g2^12*y) - t^8.993/(g1^8*g2^8*y) + t^8.997/(g1^4*g2^4*y) - (t^4.498*y)/(g1^2*g2^2) - (t^6.717*y)/(g1^11*g2^3) - (g2*t^6.721*y)/g1^7 - (t^6.77*y)/(g1^3*g2^11) + (g2^2*t^7.442*y)/g1^14 + (g2^6*t^7.445*y)/g1^10 + (g2^10*t^7.449*y)/g1^6 + (t^7.491*y)/(g1^10*g2^10) + (2*t^7.495*y)/(g1^6*g2^6) + (2*t^7.498*y)/(g1^2*g2^2) + g1^6*g2^6*t^7.505*y + (g1^6*t^7.551*y)/g2^10 + (t^8.219*y)/(g1^9*g2) + (3*g2^3*t^8.223*y)/g1^5 + (5*g2^7*t^8.226*y)/g1 + 3*g1^3*g2^11*t^8.23*y + g1^7*g2^15*t^8.233*y + (t^8.272*y)/(g1*g2^9) + (3*g1^3*t^8.276*y)/g2^5 + (3*g1^7*t^8.279*y)/g2 + 2*g1^11*g2^3*t^8.283*y + g1^15*g2^7*t^8.286*y - (t^8.937*y)/(g1^20*g2^4) - (t^8.94*y)/g1^16 + (g2^8*t^8.947*y)/g1^8 + (g2^12*t^8.951*y)/g1^4 - (t^8.99*y)/(g1^12*g2^12) - (t^8.993*y)/(g1^8*g2^8) + (t^8.997*y)/(g1^4*g2^4)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2890 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}^{2}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}q_{1}\tilde{q}_{1}$ 0.6466 0.8507 0.76 [M:[1.0, 1.0338, 0.9324, 1.0338, 0.7334, 0.7159, 0.6996], q:[0.7584, 0.2416], qb:[0.542, 0.5256], phi:[0.4831]] t^2.099 + t^2.148 + t^2.2 + t^2.301 + t^2.351 + t^2.797 + t^3. + 2*t^3.101 + t^3.751 + t^4.198 + t^4.247 + t^4.296 + t^4.299 + t^4.348 + 2*t^4.4 + 2*t^4.449 + t^4.498 + t^4.502 + t^4.551 + 2*t^4.603 + 2*t^4.652 + 2*t^4.701 + t^4.896 + t^4.945 + t^4.997 + t^5.099 + t^5.148 + 3*t^5.2 + 2*t^5.249 + 3*t^5.301 + t^5.351 + 2*t^5.403 + 2*t^5.452 + t^5.595 + t^5.797 + t^5.85 + 2*t^5.899 - 3*t^6. - t^4.449/y - t^4.449*y detail