Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46881 SU2adj1nf2 $\phi_1q_1^2$ + $ \phi_1^4$ + $ M_1q_2\tilde{q}_2$ + $ M_2\phi_1\tilde{q}_1^2$ + $ M_3q_1q_2$ + $ M_4q_2\tilde{q}_1$ + $ M_5\phi_1\tilde{q}_2^2$ + $ M_6\phi_1\tilde{q}_1\tilde{q}_2$ 0.6792 0.8856 0.7669 [X:[], M:[1.1517, 0.6966, 0.8034, 1.1517, 0.6966, 0.6966], q:[0.75, 0.4466], qb:[0.4017, 0.4017], phi:[0.5]] [X:[], M:[[1, 0], [-2, 0], [1, 1], [0, 1], [0, -2], [-1, -1]], q:[[0, 0], [-1, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_5$, $ M_6$, $ M_3$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1^2$, $ M_1$, $ q_1\tilde{q}_1$, $ M_4$, $ q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ M_2^2$, $ M_5^2$, $ M_5M_6$, $ M_2M_5$, $ M_6^2$, $ \phi_1q_2^2$, $ M_2M_6$, $ M_2M_3$, $ M_3M_5$, $ M_3M_6$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ M_6\tilde{q}_1\tilde{q}_2$, $ M_3M_5$, $ M_5\tilde{q}_1\tilde{q}_2$, $ M_2M_3$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_2\phi_1^2$, $ M_5\phi_1^2$, $ M_6\phi_1^2$, $ M_3\phi_1^2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_1M_2$, $ M_4M_6$, $ M_2q_1\tilde{q}_1$, $ M_6q_1\tilde{q}_2$, $ M_1M_5$, $ M_5q_1\tilde{q}_1$, $ M_4M_5$, $ M_1M_6$, $ M_6q_1\tilde{q}_1$, $ M_5q_1\tilde{q}_2$, $ M_2M_4$, $ M_2q_1\tilde{q}_2$, $ M_1M_3$, $ M_3q_1\tilde{q}_1$, $ q_1\tilde{q}_1^2\tilde{q}_2$, $ M_3M_4$, $ M_3q_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_1\tilde{q}_2^2$ . -5 3*t^2.09 + 2*t^2.41 + t^3. + 4*t^3.46 + 2*t^4.04 + 7*t^4.18 + 6*t^4.5 + 3*t^4.82 + 3*t^5.09 + 2*t^5.41 + 12*t^5.54 + 6*t^5.87 - 5*t^6. + 4*t^6.13 + 13*t^6.27 + 4*t^6.46 + 12*t^6.59 + 15*t^6.91 - 2*t^7.04 + 6*t^7.18 + 4*t^7.23 - 4*t^7.37 + 6*t^7.5 + 24*t^7.63 + 2*t^7.82 + 14*t^7.96 - 16*t^8.09 + 8*t^8.22 + 8*t^8.28 + 22*t^8.36 - 10*t^8.41 + 8*t^8.54 + 20*t^8.68 + 4*t^8.87 - t^4.5/y - (3*t^6.59)/y - t^6.91/y + (2*t^7.04)/y + (3*t^7.18)/y + (6*t^7.5)/y + t^7.82/y - (2*t^7.96)/y + (4*t^8.09)/y + (5*t^8.41)/y + (12*t^8.54)/y - (6*t^8.68)/y + (8*t^8.87)/y - t^4.5*y - 3*t^6.59*y - t^6.91*y + 2*t^7.04*y + 3*t^7.18*y + 6*t^7.5*y + t^7.82*y - 2*t^7.96*y + 4*t^8.09*y + 5*t^8.41*y + 12*t^8.54*y - 6*t^8.68*y + 8*t^8.87*y t^2.09/g1^2 + t^2.09/g2^2 + t^2.09/(g1*g2) + 2*g1*g2*t^2.41 + t^3. + 2*g1*t^3.46 + 2*g2*t^3.46 + t^4.04/g1 + t^4.04/g2 + t^4.18/g1^4 + t^4.18/g2^4 + t^4.18/(g1*g2^3) + (3*t^4.18)/(g1^2*g2^2) + t^4.18/(g1^3*g2) + 2*t^4.5 + (2*g1*t^4.5)/g2 + (2*g2*t^4.5)/g1 + 3*g1^2*g2^2*t^4.82 + t^5.09/g1^2 + t^5.09/g2^2 + t^5.09/(g1*g2) + 2*g1*g2*t^5.41 + (4*t^5.54)/g1 + (2*g1*t^5.54)/g2^2 + (4*t^5.54)/g2 + (2*g2*t^5.54)/g1^2 + 3*g1^2*g2*t^5.87 + 3*g1*g2^2*t^5.87 - 3*t^6. - (g1*t^6.)/g2 - (g2*t^6.)/g1 + t^6.13/g1^3 + t^6.13/g2^3 + t^6.13/(g1*g2^2) + t^6.13/(g1^2*g2) + t^6.27/g1^6 + t^6.27/g2^6 + t^6.27/(g1*g2^5) + (3*t^6.27)/(g1^2*g2^4) + (3*t^6.27)/(g1^3*g2^3) + (3*t^6.27)/(g1^4*g2^2) + t^6.27/(g1^5*g2) + 2*g1*t^6.46 + 2*g2*t^6.46 + (2*t^6.59)/g1^2 + (2*g1*t^6.59)/g2^3 + (2*t^6.59)/g2^2 + (4*t^6.59)/(g1*g2) + (2*g2*t^6.59)/g1^3 + 5*g1^2*t^6.91 + 5*g1*g2*t^6.91 + 5*g2^2*t^6.91 - t^7.04/g1 - t^7.04/g2 + t^7.18/g1^4 + t^7.18/g2^4 + t^7.18/(g1*g2^3) + (2*t^7.18)/(g1^2*g2^2) + t^7.18/(g1^3*g2) + 4*g1^3*g2^3*t^7.23 - 2*g1^2*g2*t^7.37 - 2*g1*g2^2*t^7.37 + 2*t^7.5 + (2*g1*t^7.5)/g2 + (2*g2*t^7.5)/g1 + (4*t^7.63)/g1^3 + (2*g1*t^7.63)/g2^4 + (4*t^7.63)/g2^3 + (6*t^7.63)/(g1*g2^2) + (6*t^7.63)/(g1^2*g2) + (2*g2*t^7.63)/g1^4 + 2*g1^2*g2^2*t^7.82 + 4*g1*t^7.96 + (3*g1^2*t^7.96)/g2 + 4*g2*t^7.96 + (3*g2^2*t^7.96)/g1 - (4*t^8.09)/g1^2 - (g1*t^8.09)/g2^3 - (4*t^8.09)/g2^2 - (6*t^8.09)/(g1*g2) - (g2*t^8.09)/g1^3 + t^8.22/g1^5 + t^8.22/g2^5 + t^8.22/(g1*g2^4) + (2*t^8.22)/(g1^2*g2^3) + (2*t^8.22)/(g1^3*g2^2) + t^8.22/(g1^4*g2) + 4*g1^3*g2^2*t^8.28 + 4*g1^2*g2^3*t^8.28 + t^8.36/g1^8 + t^8.36/g2^8 + t^8.36/(g1*g2^7) + (3*t^8.36)/(g1^2*g2^6) + (3*t^8.36)/(g1^3*g2^5) + (6*t^8.36)/(g1^4*g2^4) + (3*t^8.36)/(g1^5*g2^3) + (3*t^8.36)/(g1^6*g2^2) + t^8.36/(g1^7*g2) - 2*g1^2*t^8.41 - 6*g1*g2*t^8.41 - 2*g2^2*t^8.41 + (2*t^8.54)/g1 + (2*g1*t^8.54)/g2^2 + (2*t^8.54)/g2 + (2*g2*t^8.54)/g1^2 + (2*t^8.68)/g1^4 + (2*g1*t^8.68)/g2^5 + (2*t^8.68)/g2^4 + (4*t^8.68)/(g1*g2^3) + (4*t^8.68)/(g1^2*g2^2) + (4*t^8.68)/(g1^3*g2) + (2*g2*t^8.68)/g1^5 + 2*g1^2*g2*t^8.87 + 2*g1*g2^2*t^8.87 - t^4.5/y - t^6.59/(g1^2*y) - t^6.59/(g2^2*y) - t^6.59/(g1*g2*y) - (g1*g2*t^6.91)/y + t^7.04/(g1*y) + t^7.04/(g2*y) + t^7.18/(g1*g2^3*y) + t^7.18/(g1^2*g2^2*y) + t^7.18/(g1^3*g2*y) + (2*t^7.5)/y + (2*g1*t^7.5)/(g2*y) + (2*g2*t^7.5)/(g1*y) + (g1^2*g2^2*t^7.82)/y - (g1*t^7.96)/y - (g2*t^7.96)/y + t^8.09/(g1^2*y) + t^8.09/(g2^2*y) + (2*t^8.09)/(g1*g2*y) + (g1^2*t^8.41)/y + (3*g1*g2*t^8.41)/y + (g2^2*t^8.41)/y + (4*t^8.54)/(g1*y) + (2*g1*t^8.54)/(g2^2*y) + (4*t^8.54)/(g2*y) + (2*g2*t^8.54)/(g1^2*y) - t^8.68/(g1^4*y) - t^8.68/(g2^4*y) - t^8.68/(g1*g2^3*y) - (2*t^8.68)/(g1^2*g2^2*y) - t^8.68/(g1^3*g2*y) + (4*g1^2*g2*t^8.87)/y + (4*g1*g2^2*t^8.87)/y - t^4.5*y - (t^6.59*y)/g1^2 - (t^6.59*y)/g2^2 - (t^6.59*y)/(g1*g2) - g1*g2*t^6.91*y + (t^7.04*y)/g1 + (t^7.04*y)/g2 + (t^7.18*y)/(g1*g2^3) + (t^7.18*y)/(g1^2*g2^2) + (t^7.18*y)/(g1^3*g2) + 2*t^7.5*y + (2*g1*t^7.5*y)/g2 + (2*g2*t^7.5*y)/g1 + g1^2*g2^2*t^7.82*y - g1*t^7.96*y - g2*t^7.96*y + (t^8.09*y)/g1^2 + (t^8.09*y)/g2^2 + (2*t^8.09*y)/(g1*g2) + g1^2*t^8.41*y + 3*g1*g2*t^8.41*y + g2^2*t^8.41*y + (4*t^8.54*y)/g1 + (2*g1*t^8.54*y)/g2^2 + (4*t^8.54*y)/g2 + (2*g2*t^8.54*y)/g1^2 - (t^8.68*y)/g1^4 - (t^8.68*y)/g2^4 - (t^8.68*y)/(g1*g2^3) - (2*t^8.68*y)/(g1^2*g2^2) - (t^8.68*y)/(g1^3*g2) + 4*g1^2*g2*t^8.87*y + 4*g1*g2^2*t^8.87*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46716 SU2adj1nf2 $\phi_1q_1^2$ + $ \phi_1^4$ + $ M_1q_2\tilde{q}_2$ + $ M_2\phi_1\tilde{q}_1^2$ + $ M_3q_1q_2$ + $ M_4q_2\tilde{q}_1$ + $ M_5\phi_1\tilde{q}_2^2$ 0.6586 0.8461 0.7784 [X:[], M:[1.1497, 0.7005, 0.7995, 1.1497, 0.7005], q:[0.75, 0.4505], qb:[0.3997, 0.3997], phi:[0.5]] 2*t^2.1 + 2*t^2.4 + t^3. + 4*t^3.45 + t^3.9 + 2*t^4.05 + 4*t^4.2 + 4*t^4.5 + 3*t^4.8 + 2*t^5.1 + 2*t^5.4 + 8*t^5.55 + 6*t^5.85 - 3*t^6. - t^4.5/y - t^4.5*y detail