Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1956 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{4}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{6}q_{1}q_{2}$ 0.6792 0.8856 0.7669 [M:[1.1517, 1.1517, 0.6966, 0.6966, 0.6966, 0.8034], q:[0.75, 0.4466], qb:[0.4017, 0.4017], phi:[0.5]] [M:[[1], [1], [-2], [-2], [-2], [2]], q:[[0], [-2]], qb:[[1], [1]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{4}$, ${ }M_{5}$, ${ }M_{6}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{4}M_{5}$, ${ }M_{5}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{4}M_{6}$, ${ }M_{5}M_{6}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{4}$, ${ }M_{2}M_{4}$, ${ }M_{1}M_{5}$, ${ }M_{2}M_{5}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }M_{5}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{6}$, ${ }M_{2}M_{6}$, ${ }M_{6}q_{1}\tilde{q}_{1}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ ${}$ -5 3*t^2.09 + 2*t^2.41 + t^3. + 4*t^3.455 + 2*t^4.045 + 7*t^4.18 + 6*t^4.5 + 3*t^4.82 + 3*t^5.09 + 2*t^5.41 + 12*t^5.545 + 6*t^5.865 - 5*t^6. + 4*t^6.135 + 13*t^6.269 + 4*t^6.455 + 12*t^6.59 + 15*t^6.91 - 2*t^7.045 + 6*t^7.18 + 4*t^7.231 - 4*t^7.365 + 6*t^7.5 + 24*t^7.635 + 2*t^7.82 + 14*t^7.955 - 16*t^8.09 + 8*t^8.224 + 8*t^8.276 + 22*t^8.359 - 10*t^8.41 + 8*t^8.545 + 20*t^8.68 + 4*t^8.865 - t^4.5/y - (3*t^6.59)/y - t^6.91/y + (2*t^7.045)/y + (3*t^7.18)/y + (6*t^7.5)/y + t^7.82/y - (2*t^7.955)/y + (4*t^8.09)/y + (5*t^8.41)/y + (12*t^8.545)/y - (6*t^8.68)/y + (8*t^8.865)/y - t^4.5*y - 3*t^6.59*y - t^6.91*y + 2*t^7.045*y + 3*t^7.18*y + 6*t^7.5*y + t^7.82*y - 2*t^7.955*y + 4*t^8.09*y + 5*t^8.41*y + 12*t^8.545*y - 6*t^8.68*y + 8*t^8.865*y (3*t^2.09)/g1^2 + 2*g1^2*t^2.41 + t^3. + 4*g1*t^3.455 + (2*t^4.045)/g1 + (7*t^4.18)/g1^4 + 6*t^4.5 + 3*g1^4*t^4.82 + (3*t^5.09)/g1^2 + 2*g1^2*t^5.41 + (12*t^5.545)/g1 + 6*g1^3*t^5.865 - 5*t^6. + (4*t^6.135)/g1^3 + (13*t^6.269)/g1^6 + 4*g1*t^6.455 + (12*t^6.59)/g1^2 + 15*g1^2*t^6.91 - (2*t^7.045)/g1 + (6*t^7.18)/g1^4 + 4*g1^6*t^7.231 - 4*g1^3*t^7.365 + 6*t^7.5 + (24*t^7.635)/g1^3 + 2*g1^4*t^7.82 + 14*g1*t^7.955 - (16*t^8.09)/g1^2 + (8*t^8.224)/g1^5 + 8*g1^5*t^8.276 + (22*t^8.359)/g1^8 - 10*g1^2*t^8.41 + (8*t^8.545)/g1 + (20*t^8.68)/g1^4 + 4*g1^3*t^8.865 - t^4.5/y - (3*t^6.59)/(g1^2*y) - (g1^2*t^6.91)/y + (2*t^7.045)/(g1*y) + (3*t^7.18)/(g1^4*y) + (6*t^7.5)/y + (g1^4*t^7.82)/y - (2*g1*t^7.955)/y + (4*t^8.09)/(g1^2*y) + (5*g1^2*t^8.41)/y + (12*t^8.545)/(g1*y) - (6*t^8.68)/(g1^4*y) + (8*g1^3*t^8.865)/y - t^4.5*y - (3*t^6.59*y)/g1^2 - g1^2*t^6.91*y + (2*t^7.045*y)/g1 + (3*t^7.18*y)/g1^4 + 6*t^7.5*y + g1^4*t^7.82*y - 2*g1*t^7.955*y + (4*t^8.09*y)/g1^2 + 5*g1^2*t^8.41*y + (12*t^8.545*y)/g1 - (6*t^8.68*y)/g1^4 + 8*g1^3*t^8.865*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
633 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{4}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}\tilde{q}_{2}^{2}$ 0.6633 0.8593 0.772 [M:[1.1588, 1.1588, 0.6825, 0.6825, 0.6825], q:[0.75, 0.4325], qb:[0.4088, 0.4088], phi:[0.5]] 3*t^2.047 + t^2.453 + t^3. + 4*t^3.476 + t^3.547 + 2*t^4.024 + 7*t^4.095 + 3*t^4.5 + t^4.905 + 3*t^5.047 + t^5.453 + 12*t^5.524 + 3*t^5.595 + 2*t^5.929 - 4*t^6. - t^4.5/y - t^4.5*y detail