Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46859 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ | 0.6504 | 0.8579 | 0.7582 | [M:[0.6808, 0.6965, 1.0, 0.7299, 1.0491, 0.9019], q:[0.7623, 0.5569], qb:[0.5412, 0.2377], phi:[0.4755]] | [M:[[1, 9], [-1, 1], [0, 0], [1, 5], [0, -4], [0, 8]], q:[[0, -1], [-1, -8]], qb:[[1, 0], [0, 1]], phi:[[0, 2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{2}$, ${ }M_{4}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{6}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}$, ${ }M_{5}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{2}M_{4}$, ${ }M_{4}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{6}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{4}M_{6}$, ${ }M_{1}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{5}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{3}$, ${ }M_{2}M_{5}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}^{3}$, ${ }M_{4}M_{5}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{6}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{6}$, ${ }\phi_{1}^{2}\tilde{q}_{2}^{4}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$ | ${}M_{5}\phi_{1}\tilde{q}_{2}^{2}$ | -2 | t^2.042 + t^2.09 + t^2.19 + t^2.337 + t^2.384 + t^2.706 + t^2.853 + t^3. + t^3.147 + t^3.763 + t^4.085 + t^4.132 + t^4.179 + t^4.232 + t^4.279 + 2*t^4.379 + 2*t^4.426 + t^4.474 + t^4.526 + t^4.574 + 2*t^4.674 + 2*t^4.721 + t^4.748 + 2*t^4.768 + t^4.795 + 2*t^4.895 + t^4.942 + 2*t^5.042 + t^5.09 + 3*t^5.19 + 2*t^5.237 + 2*t^5.337 + t^5.384 + t^5.411 + t^5.484 + t^5.531 + t^5.558 + 2*t^5.706 + t^5.806 + 2*t^5.853 - 2*t^6. - t^6.047 + t^6.1 + t^6.127 + t^6.147 + t^6.174 + t^6.222 + t^6.269 + t^6.275 + t^6.322 + t^6.369 + 2*t^6.422 + 3*t^6.469 + t^6.516 + t^6.563 + 2*t^6.569 + 2*t^6.616 + 3*t^6.716 + 4*t^6.763 + t^6.791 + 2*t^6.81 + t^6.838 + 2*t^6.858 + 2*t^6.863 + t^6.885 + t^6.91 + 2*t^6.938 + 2*t^6.985 + 2*t^7.01 + t^7.032 + 2*t^7.058 + 3*t^7.085 + 2*t^7.105 + 2*t^7.132 + 2*t^7.152 + t^7.179 + 4*t^7.232 + 4*t^7.279 + 2*t^7.326 + 4*t^7.379 + 2*t^7.426 + t^7.454 + t^7.474 + t^7.501 + 5*t^7.526 + 2*t^7.574 + 2*t^7.601 + 2*t^7.621 + t^7.648 + 2*t^7.674 + t^7.721 + 3*t^7.748 + t^7.768 + 2*t^7.795 + t^7.821 + t^7.848 + t^7.868 + 4*t^7.895 + t^7.915 + 2*t^7.942 - 2*t^8.09 + t^8.117 - t^8.137 + t^8.142 + t^8.17 + t^8.217 + 2*t^8.264 + t^8.311 + t^8.317 - 3*t^8.337 + t^8.358 + t^8.364 - 4*t^8.384 + 3*t^8.411 - t^8.431 + 2*t^8.437 + t^8.458 + 2*t^8.464 + 3*t^8.511 + 4*t^8.558 + t^8.606 + 2*t^8.611 - t^8.631 + t^8.653 + 3*t^8.658 - t^8.678 - t^8.706 + 4*t^8.758 + 4*t^8.806 + t^8.833 + t^8.88 + t^8.9 + 3*t^8.906 + t^8.927 + 2*t^8.947 + 3*t^8.953 + t^8.974 + 2*t^8.98 - t^4.426/y - t^6.469/y - t^6.516/y - t^6.616/y + t^7.232/y + t^7.279/y + t^7.379/y + (2*t^7.426)/y + t^7.474/y + t^7.526/y + t^7.574/y + (2*t^7.721)/y + t^7.748/y + t^7.795/y + (2*t^7.895)/y + t^7.942/y + (3*t^8.042)/y + (2*t^8.09)/y + (3*t^8.19)/y + (3*t^8.237)/y + (3*t^8.337)/y + (2*t^8.384)/y + t^8.484/y - t^8.511/y + t^8.531/y - t^8.606/y - t^8.658/y + (3*t^8.853)/y + t^8.953/y - t^4.426*y - t^6.469*y - t^6.516*y - t^6.616*y + t^7.232*y + t^7.279*y + t^7.379*y + 2*t^7.426*y + t^7.474*y + t^7.526*y + t^7.574*y + 2*t^7.721*y + t^7.748*y + t^7.795*y + 2*t^7.895*y + t^7.942*y + 3*t^8.042*y + 2*t^8.09*y + 3*t^8.19*y + 3*t^8.237*y + 3*t^8.337*y + 2*t^8.384*y + t^8.484*y - t^8.511*y + t^8.531*y - t^8.606*y - t^8.658*y + 3*t^8.853*y + t^8.953*y | g1*g2^9*t^2.042 + (g2*t^2.09)/g1 + g1*g2^5*t^2.19 + g1*g2*t^2.337 + t^2.384/(g1*g2^7) + g2^8*t^2.706 + g2^4*t^2.853 + t^3. + t^3.147/g2^4 + g1*g2^3*t^3.763 + g1^2*g2^18*t^4.085 + g2^10*t^4.132 + (g2^2*t^4.179)/g1^2 + g1^2*g2^14*t^4.232 + g2^6*t^4.279 + 2*g1^2*g2^10*t^4.379 + 2*g2^2*t^4.426 + t^4.474/(g1^2*g2^6) + g1^2*g2^6*t^4.526 + t^4.574/g2^2 + 2*g1^2*g2^2*t^4.674 + (2*t^4.721)/g2^6 + g1*g2^17*t^4.748 + (2*t^4.768)/(g1^2*g2^14) + (g2^9*t^4.795)/g1 + 2*g1*g2^13*t^4.895 + (g2^5*t^4.942)/g1 + 2*g1*g2^9*t^5.042 + (g2*t^5.09)/g1 + 3*g1*g2^5*t^5.19 + (2*t^5.237)/(g1*g2^3) + 2*g1*g2*t^5.337 + t^5.384/(g1*g2^7) + g2^16*t^5.411 + (g1*t^5.484)/g2^3 + t^5.531/(g1*g2^11) + g2^12*t^5.558 + 2*g2^8*t^5.706 + g1^2*g2^12*t^5.806 + 2*g2^4*t^5.853 - 2*t^6. - t^6.047/(g1^2*g2^8) + g1^2*g2^4*t^6.1 + g1^3*g2^27*t^6.127 + t^6.147/g2^4 + g1*g2^19*t^6.174 + (g2^11*t^6.222)/g1 + (g2^3*t^6.269)/g1^3 + g1^3*g2^23*t^6.275 + g1*g2^15*t^6.322 + (g2^7*t^6.369)/g1 + 2*g1^3*g2^19*t^6.422 + 3*g1*g2^11*t^6.469 + (g2^3*t^6.516)/g1 + t^6.563/(g1^3*g2^5) + 2*g1^3*g2^15*t^6.569 + 2*g1*g2^7*t^6.616 + 3*g1^3*g2^11*t^6.716 + 4*g1*g2^3*t^6.763 + g1^2*g2^26*t^6.791 + (2*t^6.81)/(g1*g2^5) + g2^18*t^6.838 + (2*t^6.858)/(g1^3*g2^13) + 2*g1^3*g2^7*t^6.863 + (g2^10*t^6.885)/g1^2 + (g1*t^6.91)/g2 + 2*g1^2*g2^22*t^6.938 + 2*g2^14*t^6.985 + 2*g1^3*g2^3*t^7.01 + (g2^6*t^7.032)/g1^2 + (2*g1*t^7.058)/g2^5 + 3*g1^2*g2^18*t^7.085 + (2*t^7.105)/(g1*g2^13) + 2*g2^10*t^7.132 + (2*t^7.152)/(g1^3*g2^21) + (g2^2*t^7.179)/g1^2 + 4*g1^2*g2^14*t^7.232 + 4*g2^6*t^7.279 + (2*t^7.326)/(g1^2*g2^2) + 4*g1^2*g2^10*t^7.379 + 2*g2^2*t^7.426 + g1*g2^25*t^7.454 + t^7.474/(g1^2*g2^6) + (g2^17*t^7.501)/g1 + 5*g1^2*g2^6*t^7.526 + (2*t^7.574)/g2^2 + 2*g1*g2^21*t^7.601 + (2*t^7.621)/(g1^2*g2^10) + (g2^13*t^7.648)/g1 + 2*g1^2*g2^2*t^7.674 + t^7.721/g2^6 + 3*g1*g2^17*t^7.748 + t^7.768/(g1^2*g2^14) + (2*g2^9*t^7.795)/g1 + (g1^2*t^7.821)/g2^2 + g1^3*g2^21*t^7.848 + t^7.868/g2^10 + 4*g1*g2^13*t^7.895 + t^7.915/(g1^2*g2^18) + (2*g2^5*t^7.942)/g1 - (2*g2*t^8.09)/g1 + g2^24*t^8.117 - t^8.137/(g1^3*g2^7) + g1^3*g2^13*t^8.142 + g1^4*g2^36*t^8.17 + g1^2*g2^28*t^8.217 + 2*g2^20*t^8.264 + (g2^12*t^8.311)/g1^2 + g1^4*g2^32*t^8.317 - 3*g1*g2*t^8.337 + (g2^4*t^8.358)/g1^4 + g1^2*g2^24*t^8.364 - (4*t^8.384)/(g1*g2^7) + 3*g2^16*t^8.411 - t^8.431/(g1^3*g2^15) + 2*g1^3*g2^5*t^8.437 + (g2^8*t^8.458)/g1^2 + 2*g1^4*g2^28*t^8.464 + 3*g1^2*g2^20*t^8.511 + 4*g2^12*t^8.558 + (g2^4*t^8.606)/g1^2 + 2*g1^4*g2^24*t^8.611 - (g1*t^8.631)/g2^7 + t^8.653/(g1^4*g2^4) + 3*g1^2*g2^16*t^8.658 - t^8.678/(g1*g2^15) - g2^8*t^8.706 + 4*g1^4*g2^20*t^8.758 + 4*g1^2*g2^12*t^8.806 + g1^3*g2^35*t^8.833 + g1*g2^27*t^8.88 + t^8.9/(g1^2*g2^4) + 3*g1^4*g2^16*t^8.906 + (g2^19*t^8.927)/g1 + (2*t^8.947)/(g1^4*g2^12) + 3*g1^2*g2^8*t^8.953 + (g2^11*t^8.974)/g1^3 + 2*g1^3*g2^31*t^8.98 - (g2^2*t^4.426)/y - (g1*g2^11*t^6.469)/y - (g2^3*t^6.516)/(g1*y) - (g1*g2^7*t^6.616)/y + (g1^2*g2^14*t^7.232)/y + (g2^6*t^7.279)/y + (g1^2*g2^10*t^7.379)/y + (2*g2^2*t^7.426)/y + t^7.474/(g1^2*g2^6*y) + (g1^2*g2^6*t^7.526)/y + t^7.574/(g2^2*y) + (2*t^7.721)/(g2^6*y) + (g1*g2^17*t^7.748)/y + (g2^9*t^7.795)/(g1*y) + (2*g1*g2^13*t^7.895)/y + (g2^5*t^7.942)/(g1*y) + (3*g1*g2^9*t^8.042)/y + (2*g2*t^8.09)/(g1*y) + (3*g1*g2^5*t^8.19)/y + (3*t^8.237)/(g1*g2^3*y) + (3*g1*g2*t^8.337)/y + (2*t^8.384)/(g1*g2^7*y) + (g1*t^8.484)/(g2^3*y) - (g1^2*g2^20*t^8.511)/y + t^8.531/(g1*g2^11*y) - (g2^4*t^8.606)/(g1^2*y) - (g1^2*g2^16*t^8.658)/y + (3*g2^4*t^8.853)/y + (g1^2*g2^8*t^8.953)/y - g2^2*t^4.426*y - g1*g2^11*t^6.469*y - (g2^3*t^6.516*y)/g1 - g1*g2^7*t^6.616*y + g1^2*g2^14*t^7.232*y + g2^6*t^7.279*y + g1^2*g2^10*t^7.379*y + 2*g2^2*t^7.426*y + (t^7.474*y)/(g1^2*g2^6) + g1^2*g2^6*t^7.526*y + (t^7.574*y)/g2^2 + (2*t^7.721*y)/g2^6 + g1*g2^17*t^7.748*y + (g2^9*t^7.795*y)/g1 + 2*g1*g2^13*t^7.895*y + (g2^5*t^7.942*y)/g1 + 3*g1*g2^9*t^8.042*y + (2*g2*t^8.09*y)/g1 + 3*g1*g2^5*t^8.19*y + (3*t^8.237*y)/(g1*g2^3) + 3*g1*g2*t^8.337*y + (2*t^8.384*y)/(g1*g2^7) + (g1*t^8.484*y)/g2^3 - g1^2*g2^20*t^8.511*y + (t^8.531*y)/(g1*g2^11) - (g2^4*t^8.606*y)/g1^2 - g1^2*g2^16*t^8.658*y + 3*g2^4*t^8.853*y + g1^2*g2^8*t^8.953*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
50959 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ | 0.6484 | 0.8534 | 0.7598 | [M:[0.7205, 0.6812, 1.0, 0.7598, 1.0393, 0.9214], q:[0.7598, 0.5196], qb:[0.5589, 0.2402], phi:[0.4804]] | t^2.044 + t^2.162 + 2*t^2.279 + t^2.397 + t^2.764 + t^2.882 + t^3. + t^3.118 + t^3.838 + t^4.087 + t^4.205 + 3*t^4.323 + 3*t^4.441 + 5*t^4.559 + 3*t^4.677 + 2*t^4.795 + t^4.808 + 2*t^4.926 + 3*t^5.044 + 4*t^5.162 + 4*t^5.279 + 3*t^5.397 + t^5.515 + t^5.528 + t^5.646 + 2*t^5.764 + t^5.882 - t^6. - t^4.441/y - t^4.441*y | detail | |
50975 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{7}\phi_{1}\tilde{q}_{2}^{2}$ | 0.6466 | 0.8507 | 0.76 | [M:[0.6996, 0.7159, 1.0, 0.7334, 1.0338, 0.9324, 1.0338], q:[0.7584, 0.542], qb:[0.5256, 0.2416], phi:[0.4831]] | t^2.099 + t^2.148 + t^2.2 + t^2.301 + t^2.351 + t^2.797 + t^3. + 2*t^3.101 + t^3.751 + t^4.198 + t^4.247 + t^4.296 + t^4.299 + t^4.348 + 2*t^4.4 + 2*t^4.449 + t^4.498 + t^4.502 + t^4.551 + 2*t^4.603 + 2*t^4.652 + 2*t^4.701 + t^4.896 + t^4.945 + t^4.997 + t^5.099 + t^5.148 + 3*t^5.2 + 2*t^5.249 + 3*t^5.301 + t^5.351 + 2*t^5.403 + 2*t^5.452 + t^5.595 + t^5.797 + t^5.85 + 2*t^5.899 - 3*t^6. - t^4.449/y - t^4.449*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46578 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ | 0.6442 | 0.847 | 0.7605 | [M:[0.719, 0.7359, 1.0, 0.737, 1.0181], q:[0.7545, 0.5265], qb:[0.5096, 0.2455], phi:[0.491]] | t^2.157 + t^2.208 + t^2.211 + t^2.265 + t^2.316 + t^2.946 + t^3. + t^3.054 + t^3.108 + t^3.738 + t^4.314 + t^4.365 + t^4.368 + t^4.415 + t^4.419 + 2*t^4.422 + 2*t^4.473 + t^4.476 + t^4.524 + t^4.527 + 2*t^4.53 + 2*t^4.581 + 2*t^4.632 + t^5.103 + t^5.154 + t^5.157 + 3*t^5.211 + 2*t^5.262 + 3*t^5.265 + 2*t^5.316 + 2*t^5.319 + t^5.37 + t^5.373 + t^5.424 + t^5.892 + t^5.895 + t^5.946 - 2*t^6. - t^4.473/y - t^4.473*y | detail |