Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2779 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_1\tilde{q}_1$ 0.6504 0.8579 0.7582 [X:[], M:[1.0, 1.0491, 0.9019, 0.7299, 0.6965, 0.6808], q:[0.7623, 0.2377], qb:[0.5569, 0.5412], phi:[0.4755]] [X:[], M:[[0, 0], [4, 4], [-8, -8], [-5, 3], [-1, -9], [-9, -1]], q:[[1, 1], [-1, -1]], qb:[[8, 0], [0, 8]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ M_5$, $ M_4$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ M_3$, $ \phi_1q_2^2$, $ M_1$, $ M_2$, $ \phi_1q_2\tilde{q}_2$, $ M_6^2$, $ M_5M_6$, $ M_5^2$, $ M_4M_6$, $ M_4M_5$, $ M_4^2$, $ M_6q_2\tilde{q}_2$, $ \phi_1q_1q_2$, $ M_6q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_3M_6$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ M_3M_5$, $ M_3M_4$, $ M_6\phi_1q_2^2$, $ M_5\phi_1q_2^2$, $ M_1M_6$, $ M_4\phi_1q_2^2$, $ M_1M_5$, $ M_1M_4$, $ M_2M_6$, $ \phi_1q_2^3\tilde{q}_2$, $ M_2M_5$, $ \phi_1q_2^3\tilde{q}_1$, $ M_2M_4$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ M_3^2$, $ M_2q_2\tilde{q}_2$, $ M_2q_2\tilde{q}_1$, $ M_3\phi_1q_2^2$, $ M_1M_3$, $ \phi_1^2q_2^4$, $ M_6\phi_1q_2\tilde{q}_2$, $ M_2M_3$, $ M_5\phi_1q_2\tilde{q}_2$ . -2 t^2.04 + t^2.09 + t^2.19 + t^2.34 + t^2.38 + t^2.71 + t^2.85 + t^3. + t^3.15 + t^3.76 + t^4.08 + t^4.13 + t^4.18 + t^4.23 + t^4.28 + 2*t^4.38 + 2*t^4.43 + t^4.47 + t^4.53 + t^4.57 + 2*t^4.67 + 2*t^4.72 + t^4.75 + 2*t^4.77 + t^4.8 + 2*t^4.9 + t^4.94 + 2*t^5.04 + t^5.09 + 3*t^5.19 + 2*t^5.24 + 2*t^5.34 + t^5.38 + t^5.41 + t^5.48 + t^5.53 + t^5.56 + 2*t^5.71 + t^5.81 + 2*t^5.85 - 2*t^6. - t^6.05 + t^6.1 + t^6.13 + t^6.15 + t^6.17 + t^6.22 + 2*t^6.27 + t^6.32 + t^6.37 + 2*t^6.42 + 3*t^6.47 + t^6.52 + t^6.56 + 2*t^6.57 + 2*t^6.62 + 3*t^6.72 + 4*t^6.76 + t^6.79 + 2*t^6.81 + t^6.84 + 4*t^6.86 + t^6.88 + t^6.91 + 2*t^6.94 + 2*t^6.98 + 2*t^7.01 + t^7.03 + 2*t^7.06 + 3*t^7.08 + 2*t^7.1 + 2*t^7.13 + 2*t^7.15 + t^7.18 + 4*t^7.23 + 4*t^7.28 + 2*t^7.33 + 4*t^7.38 + 2*t^7.43 + t^7.45 + t^7.47 + t^7.5 + 5*t^7.53 + 2*t^7.57 + 2*t^7.6 + 2*t^7.62 + t^7.65 + 2*t^7.67 + t^7.72 + 3*t^7.75 + t^7.77 + 2*t^7.8 + t^7.82 + t^7.85 + t^7.87 + 4*t^7.9 + t^7.92 + 2*t^7.94 - 2*t^8.09 + t^8.12 + t^8.17 + t^8.22 + 2*t^8.26 + t^8.31 + t^8.32 - 3*t^8.34 + 2*t^8.36 - 4*t^8.38 + 3*t^8.41 - t^8.43 + 2*t^8.44 + 3*t^8.46 + 3*t^8.51 + 4*t^8.56 + 3*t^8.61 - t^8.63 + t^8.65 + 3*t^8.66 - t^8.68 - t^8.71 + 4*t^8.76 + 4*t^8.81 + t^8.83 + t^8.88 + t^8.9 + 3*t^8.91 + t^8.93 + 5*t^8.95 + t^8.97 + 2*t^8.98 - t^4.43/y - t^6.47/y - t^6.52/y - t^6.62/y + t^7.23/y + t^7.28/y + t^7.38/y + (2*t^7.43)/y + t^7.47/y + t^7.53/y + t^7.57/y + (2*t^7.72)/y + t^7.75/y + t^7.8/y + (2*t^7.9)/y + t^7.94/y + (3*t^8.04)/y + (2*t^8.09)/y + (3*t^8.19)/y + (3*t^8.24)/y + (3*t^8.34)/y + (2*t^8.38)/y + t^8.48/y - t^8.51/y + t^8.53/y - t^8.61/y - t^8.66/y + (3*t^8.85)/y + t^8.95/y - t^4.43*y - t^6.47*y - t^6.52*y - t^6.62*y + t^7.23*y + t^7.28*y + t^7.38*y + 2*t^7.43*y + t^7.47*y + t^7.53*y + t^7.57*y + 2*t^7.72*y + t^7.75*y + t^7.8*y + 2*t^7.9*y + t^7.94*y + 3*t^8.04*y + 2*t^8.09*y + 3*t^8.19*y + 3*t^8.24*y + 3*t^8.34*y + 2*t^8.38*y + t^8.48*y - t^8.51*y + t^8.53*y - t^8.61*y - t^8.66*y + 3*t^8.85*y + t^8.95*y t^2.04/(g1^9*g2) + t^2.09/(g1*g2^9) + (g2^3*t^2.19)/g1^5 + (g2^7*t^2.34)/g1 + (g1^7*t^2.38)/g2 + t^2.71/(g1^8*g2^8) + t^2.85/(g1^4*g2^4) + t^3. + g1^4*g2^4*t^3.15 + (g2^5*t^3.76)/g1^3 + t^4.08/(g1^18*g2^2) + t^4.13/(g1^10*g2^10) + t^4.18/(g1^2*g2^18) + (g2^2*t^4.23)/g1^14 + t^4.28/(g1^6*g2^6) + (2*g2^6*t^4.38)/g1^10 + (2*t^4.43)/(g1^2*g2^2) + (g1^6*t^4.47)/g2^10 + (g2^10*t^4.53)/g1^6 + g1^2*g2^2*t^4.57 + (2*g2^14*t^4.67)/g1^2 + 2*g1^6*g2^6*t^4.72 + t^4.75/(g1^17*g2^9) + (2*g1^14*t^4.77)/g2^2 + t^4.8/(g1^9*g2^17) + (2*t^4.9)/(g1^13*g2^5) + t^4.94/(g1^5*g2^13) + (2*t^5.04)/(g1^9*g2) + t^5.09/(g1*g2^9) + (3*g2^3*t^5.19)/g1^5 + (2*g1^3*t^5.24)/g2^5 + (2*g2^7*t^5.34)/g1 + (g1^7*t^5.38)/g2 + t^5.41/(g1^16*g2^16) + g1^3*g2^11*t^5.48 + g1^11*g2^3*t^5.53 + t^5.56/(g1^12*g2^12) + (2*t^5.71)/(g1^8*g2^8) + (g2^4*t^5.81)/g1^12 + (2*t^5.85)/(g1^4*g2^4) - 2*t^6. - (g1^8*t^6.05)/g2^8 + (g2^12*t^6.1)/g1^4 + t^6.13/(g1^27*g2^3) + g1^4*g2^4*t^6.15 + t^6.17/(g1^19*g2^11) + t^6.22/(g1^11*g2^19) + t^6.27/(g1^3*g2^27) + (g2*t^6.27)/g1^23 + t^6.32/(g1^15*g2^7) + t^6.37/(g1^7*g2^15) + (2*g2^5*t^6.42)/g1^19 + (3*t^6.47)/(g1^11*g2^3) + t^6.52/(g1^3*g2^11) + (g1^5*t^6.56)/g2^19 + (2*g2^9*t^6.57)/g1^15 + (2*g2*t^6.62)/g1^7 + (3*g2^13*t^6.72)/g1^11 + (4*g2^5*t^6.76)/g1^3 + t^6.79/(g1^26*g2^10) + (2*g1^5*t^6.81)/g2^3 + t^6.84/(g1^18*g2^18) + (2*g1^13*t^6.86)/g2^11 + (2*g2^17*t^6.86)/g1^7 + t^6.88/(g1^10*g2^26) + g1*g2^9*t^6.91 + (2*t^6.94)/(g1^22*g2^6) + (2*t^6.98)/(g1^14*g2^14) + (2*g2^21*t^7.01)/g1^3 + t^7.03/(g1^6*g2^22) + 2*g1^5*g2^13*t^7.06 + (3*t^7.08)/(g1^18*g2^2) + 2*g1^13*g2^5*t^7.1 + (2*t^7.13)/(g1^10*g2^10) + (2*g1^21*t^7.15)/g2^3 + t^7.18/(g1^2*g2^18) + (4*g2^2*t^7.23)/g1^14 + (4*t^7.28)/(g1^6*g2^6) + (2*g1^2*t^7.33)/g2^14 + (4*g2^6*t^7.38)/g1^10 + (2*t^7.43)/(g1^2*g2^2) + t^7.45/(g1^25*g2^17) + (g1^6*t^7.47)/g2^10 + t^7.5/(g1^17*g2^25) + (5*g2^10*t^7.53)/g1^6 + 2*g1^2*g2^2*t^7.57 + (2*t^7.6)/(g1^21*g2^13) + (2*g1^10*t^7.62)/g2^6 + t^7.65/(g1^13*g2^21) + (2*g2^14*t^7.67)/g1^2 + g1^6*g2^6*t^7.72 + (3*t^7.75)/(g1^17*g2^9) + (g1^14*t^7.77)/g2^2 + (2*t^7.8)/(g1^9*g2^17) + g1^2*g2^18*t^7.82 + (g2^3*t^7.85)/g1^21 + g1^10*g2^10*t^7.87 + (4*t^7.9)/(g1^13*g2^5) + g1^18*g2^2*t^7.92 + (2*t^7.94)/(g1^5*g2^13) - (2*t^8.09)/(g1*g2^9) + t^8.12/(g1^24*g2^24) - (g1^7*t^8.14)/g2^17 + (g2^11*t^8.14)/g1^13 + t^8.17/(g1^36*g2^4) + t^8.22/(g1^28*g2^12) + (2*t^8.26)/(g1^20*g2^20) + t^8.31/(g1^12*g2^28) + t^8.32/g1^32 - (3*g2^7*t^8.34)/g1 + t^8.36/(g1^4*g2^36) + t^8.36/(g1^24*g2^8) - (4*g1^7*t^8.38)/g2 + (3*t^8.41)/(g1^16*g2^16) - (g1^15*t^8.43)/g2^9 + (2*g2^19*t^8.44)/g1^5 + t^8.46/(g1^8*g2^24) + (2*g2^4*t^8.46)/g1^28 + (3*t^8.51)/(g1^20*g2^4) + (4*t^8.56)/(g1^12*g2^12) + t^8.61/(g1^4*g2^20) + (2*g2^8*t^8.61)/g1^24 - g1^7*g2^15*t^8.63 + (g1^4*t^8.65)/g2^28 + (3*t^8.66)/g1^16 - g1^15*g2^7*t^8.68 - t^8.71/(g1^8*g2^8) + (4*g2^12*t^8.76)/g1^20 + (4*g2^4*t^8.81)/g1^12 + t^8.83/(g1^35*g2^11) + t^8.88/(g1^27*g2^19) + (g1^4*t^8.9)/g2^12 + (3*g2^16*t^8.91)/g1^16 + t^8.93/(g1^19*g2^27) + (2*g1^12*t^8.95)/g2^20 + (3*g2^8*t^8.95)/g1^8 + t^8.97/(g1^11*g2^35) + (2*t^8.98)/(g1^31*g2^7) - t^4.43/(g1^2*g2^2*y) - t^6.47/(g1^11*g2^3*y) - t^6.52/(g1^3*g2^11*y) - (g2*t^6.62)/(g1^7*y) + (g2^2*t^7.23)/(g1^14*y) + t^7.28/(g1^6*g2^6*y) + (g2^6*t^7.38)/(g1^10*y) + (2*t^7.43)/(g1^2*g2^2*y) + (g1^6*t^7.47)/(g2^10*y) + (g2^10*t^7.53)/(g1^6*y) + (g1^2*g2^2*t^7.57)/y + (2*g1^6*g2^6*t^7.72)/y + t^7.75/(g1^17*g2^9*y) + t^7.8/(g1^9*g2^17*y) + (2*t^7.9)/(g1^13*g2^5*y) + t^7.94/(g1^5*g2^13*y) + (3*t^8.04)/(g1^9*g2*y) + (2*t^8.09)/(g1*g2^9*y) + (3*g2^3*t^8.19)/(g1^5*y) + (3*g1^3*t^8.24)/(g2^5*y) + (3*g2^7*t^8.34)/(g1*y) + (2*g1^7*t^8.38)/(g2*y) + (g1^3*g2^11*t^8.48)/y - t^8.51/(g1^20*g2^4*y) + (g1^11*g2^3*t^8.53)/y - t^8.61/(g1^4*g2^20*y) - t^8.66/(g1^16*y) + (3*t^8.85)/(g1^4*g2^4*y) + (g2^8*t^8.95)/(g1^8*y) - (t^4.43*y)/(g1^2*g2^2) - (t^6.47*y)/(g1^11*g2^3) - (t^6.52*y)/(g1^3*g2^11) - (g2*t^6.62*y)/g1^7 + (g2^2*t^7.23*y)/g1^14 + (t^7.28*y)/(g1^6*g2^6) + (g2^6*t^7.38*y)/g1^10 + (2*t^7.43*y)/(g1^2*g2^2) + (g1^6*t^7.47*y)/g2^10 + (g2^10*t^7.53*y)/g1^6 + g1^2*g2^2*t^7.57*y + 2*g1^6*g2^6*t^7.72*y + (t^7.75*y)/(g1^17*g2^9) + (t^7.8*y)/(g1^9*g2^17) + (2*t^7.9*y)/(g1^13*g2^5) + (t^7.94*y)/(g1^5*g2^13) + (3*t^8.04*y)/(g1^9*g2) + (2*t^8.09*y)/(g1*g2^9) + (3*g2^3*t^8.19*y)/g1^5 + (3*g1^3*t^8.24*y)/g2^5 + (3*g2^7*t^8.34*y)/g1 + (2*g1^7*t^8.38*y)/g2 + g1^3*g2^11*t^8.48*y - (t^8.51*y)/(g1^20*g2^4) + g1^11*g2^3*t^8.53*y - (t^8.61*y)/(g1^4*g2^20) - (t^8.66*y)/g1^16 + (3*t^8.85*y)/(g1^4*g2^4) + (g2^8*t^8.95*y)/g1^8


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3293 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5q_1\tilde{q}_2$ + $ M_6q_1\tilde{q}_1$ + $ M_6\phi_1q_2\tilde{q}_2$ 0.6484 0.8534 0.7598 [X:[], M:[1.0, 1.0393, 0.9214, 0.7598, 0.6812, 0.7205], q:[0.7598, 0.2402], qb:[0.5196, 0.5589], phi:[0.4804]] t^2.04 + t^2.16 + 2*t^2.28 + t^2.4 + t^2.76 + t^2.88 + t^3. + t^3.12 + t^3.84 + t^4.09 + t^4.21 + 3*t^4.32 + 3*t^4.44 + 5*t^4.56 + 3*t^4.68 + 2*t^4.79 + t^4.81 + 2*t^4.93 + 3*t^5.04 + 4*t^5.16 + 4*t^5.28 + 3*t^5.4 + t^5.52 + t^5.53 + t^5.65 + 2*t^5.76 + t^5.88 - t^6. - t^4.44/y - t^4.44*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1776 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5q_1\tilde{q}_2$ 0.6297 0.8172 0.7705 [X:[], M:[1.0, 1.047, 0.906, 0.7326, 0.6969], q:[0.7617, 0.2383], qb:[0.5526, 0.5414], phi:[0.4765]] t^2.09 + t^2.2 + t^2.34 + t^2.37 + t^2.72 + t^2.86 + t^3. + t^3.14 + t^3.77 + t^3.94 + t^4.18 + t^4.29 + t^4.4 + t^4.43 + t^4.46 + t^4.54 + t^4.57 + 2*t^4.68 + 2*t^4.71 + 2*t^4.75 + t^4.81 + t^4.92 + t^4.95 + t^5.06 + t^5.09 + 2*t^5.2 + 2*t^5.23 + 2*t^5.34 + t^5.37 + t^5.44 + t^5.48 + t^5.51 + t^5.58 + 2*t^5.72 + 2*t^5.86 - 2*t^6. - t^4.43/y - t^4.43*y detail