Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46835 SU2adj1nf2 ${}M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{1}q_{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ 0.627 0.8145 0.7698 [M:[1.0323, 0.9353, 1.0, 1.0323, 0.7096, 0.7096], q:[0.5323, 0.5323], qb:[0.7581, 0.2419], phi:[0.4838]] [M:[[0, -4], [0, 8], [0, 0], [0, -4], [1, 9], [-1, 1]], q:[[-1, -8], [1, 0]], qb:[[0, -1], [0, 1]], phi:[[0, 2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{5}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }M_{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{5}^{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{2}M_{5}$, ${ }M_{3}M_{6}$, ${ }M_{3}M_{5}$, ${ }M_{1}M_{6}$, ${ }M_{4}M_{6}$, ${ }M_{1}M_{5}$, ${ }M_{4}M_{5}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{6}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{4}$, ${ }M_{5}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{2}$ ${}$ -5 2*t^2.129 + 2*t^2.323 + t^2.806 + t^3. + 2*t^3.097 + 2*t^3.774 + 3*t^4.258 + 4*t^4.452 + 6*t^4.645 + 2*t^4.935 + 2*t^5.129 + 4*t^5.226 + 2*t^5.323 + 4*t^5.42 + t^5.612 + t^5.806 + 5*t^5.903 - 5*t^6. + 5*t^6.097 + 2*t^6.194 + 4*t^6.386 + 6*t^6.58 - 2*t^6.677 + 10*t^6.774 + 8*t^6.968 + 3*t^7.064 + 3*t^7.258 + 6*t^7.355 + 2*t^7.452 + 6*t^7.548 + 2*t^7.645 + 2*t^7.741 + 9*t^7.742 + 2*t^7.935 + 8*t^8.032 - 10*t^8.129 + 8*t^8.226 - 8*t^8.323 + t^8.418 + 10*t^8.42 + 5*t^8.515 + 2*t^8.517 + t^8.612 + 9*t^8.709 - 6*t^8.806 + 14*t^8.903 - t^4.452/y - (2*t^6.58)/y + t^7.355/y + (4*t^7.452)/y - t^7.548/y + (2*t^7.645)/y + (2*t^7.935)/y + (4*t^8.129)/y + (4*t^8.226)/y + (4*t^8.323)/y + (4*t^8.42)/y - (3*t^8.709)/y + t^8.806/y + (6*t^8.903)/y - t^4.452*y - 2*t^6.58*y + t^7.355*y + 4*t^7.452*y - t^7.548*y + 2*t^7.645*y + 2*t^7.935*y + 4*t^8.129*y + 4*t^8.226*y + 4*t^8.323*y + 4*t^8.42*y - 3*t^8.709*y + t^8.806*y + 6*t^8.903*y (g2*t^2.129)/g1 + g1*g2^9*t^2.129 + t^2.323/(g1*g2^7) + g1*g2*t^2.323 + g2^8*t^2.806 + t^3. + (2*t^3.097)/g2^4 + t^3.774/(g1*g2^5) + g1*g2^3*t^3.774 + (g2^2*t^4.258)/g1^2 + g2^10*t^4.258 + g1^2*g2^18*t^4.258 + t^4.452/(g1^2*g2^6) + 2*g2^2*t^4.452 + g1^2*g2^10*t^4.452 + (2*t^4.645)/(g1^2*g2^14) + (2*t^4.645)/g2^6 + 2*g1^2*g2^2*t^4.645 + (g2^9*t^4.935)/g1 + g1*g2^17*t^4.935 + (g2*t^5.129)/g1 + g1*g2^9*t^5.129 + (2*t^5.226)/(g1*g2^3) + 2*g1*g2^5*t^5.226 + t^5.323/(g1*g2^7) + g1*g2*t^5.323 + (2*t^5.42)/(g1*g2^11) + (2*g1*t^5.42)/g2^3 + g2^16*t^5.612 + g2^8*t^5.806 + t^5.903/(g1^2*g2^4) + 3*g2^4*t^5.903 + g1^2*g2^12*t^5.903 - 3*t^6. - t^6./(g1^2*g2^8) - g1^2*g2^8*t^6. + t^6.097/(g1^2*g2^12) + (3*t^6.097)/g2^4 + g1^2*g2^4*t^6.097 + (2*t^6.194)/g2^8 + (g2^3*t^6.386)/g1^3 + (g2^11*t^6.386)/g1 + g1*g2^19*t^6.386 + g1^3*g2^27*t^6.386 + t^6.58/(g1^3*g2^5) + (2*g2^3*t^6.58)/g1 + 2*g1*g2^11*t^6.58 + g1^3*g2^19*t^6.58 - t^6.677/(g1*g2) - g1*g2^7*t^6.677 + (2*t^6.774)/(g1^3*g2^13) + (3*t^6.774)/(g1*g2^5) + 3*g1*g2^3*t^6.774 + 2*g1^3*g2^11*t^6.774 + (2*t^6.968)/(g1^3*g2^21) + (2*t^6.968)/(g1*g2^13) + (2*g1*t^6.968)/g2^5 + 2*g1^3*g2^3*t^6.968 + (g2^10*t^7.064)/g1^2 + g2^18*t^7.064 + g1^2*g2^26*t^7.064 + (g2^2*t^7.258)/g1^2 + g2^10*t^7.258 + g1^2*g2^18*t^7.258 + (2*t^7.355)/(g1^2*g2^2) + 2*g2^6*t^7.355 + 2*g1^2*g2^14*t^7.355 + t^7.452/(g1^2*g2^6) + g1^2*g2^10*t^7.452 + (2*t^7.548)/(g1^2*g2^10) + (2*t^7.548)/g2^2 + 2*g1^2*g2^6*t^7.548 + t^7.645/(g1^2*g2^14) + g1^2*g2^2*t^7.645 + (g2^17*t^7.741)/g1 + g1*g2^25*t^7.741 + (3*t^7.742)/(g1^2*g2^18) + (3*t^7.742)/g2^10 + (3*g1^2*t^7.742)/g2^2 + (g2^9*t^7.935)/g1 + g1*g2^17*t^7.935 + t^8.032/(g1^3*g2^3) + (3*g2^5*t^8.032)/g1 + 3*g1*g2^13*t^8.032 + g1^3*g2^21*t^8.032 - t^8.129/(g1^3*g2^7) - (4*g2*t^8.129)/g1 - 4*g1*g2^9*t^8.129 - g1^3*g2^17*t^8.129 + t^8.226/(g1^3*g2^11) + (3*t^8.226)/(g1*g2^3) + 3*g1*g2^5*t^8.226 + g1^3*g2^13*t^8.226 - t^8.323/(g1^3*g2^15) - (3*t^8.323)/(g1*g2^7) - 3*g1*g2*t^8.323 - g1^3*g2^9*t^8.323 + g2^24*t^8.418 + (2*t^8.42)/(g1^3*g2^19) + (3*t^8.42)/(g1*g2^11) + (3*g1*t^8.42)/g2^3 + 2*g1^3*g2^5*t^8.42 + (g2^4*t^8.515)/g1^4 + (g2^12*t^8.515)/g1^2 + g2^20*t^8.515 + g1^2*g2^28*t^8.515 + g1^4*g2^36*t^8.515 + t^8.517/(g1*g2^15) + (g1*t^8.517)/g2^7 + g2^16*t^8.612 + t^8.709/(g1^4*g2^4) + (2*g2^4*t^8.709)/g1^2 + 3*g2^12*t^8.709 + 2*g1^2*g2^20*t^8.709 + g1^4*g2^28*t^8.709 - t^8.806/g1^2 - 4*g2^8*t^8.806 - g1^2*g2^16*t^8.806 + (2*t^8.903)/(g1^4*g2^12) + (3*t^8.903)/(g1^2*g2^4) + 4*g2^4*t^8.903 + 3*g1^2*g2^12*t^8.903 + 2*g1^4*g2^20*t^8.903 - (g2^2*t^4.452)/y - (g2^3*t^6.58)/(g1*y) - (g1*g2^11*t^6.58)/y + (g2^6*t^7.355)/y + t^7.452/(g1^2*g2^6*y) + (2*g2^2*t^7.452)/y + (g1^2*g2^10*t^7.452)/y - t^7.548/(g2^2*y) + (2*t^7.645)/(g2^6*y) + (g2^9*t^7.935)/(g1*y) + (g1*g2^17*t^7.935)/y + (2*g2*t^8.129)/(g1*y) + (2*g1*g2^9*t^8.129)/y + (2*t^8.226)/(g1*g2^3*y) + (2*g1*g2^5*t^8.226)/y + (2*t^8.323)/(g1*g2^7*y) + (2*g1*g2*t^8.323)/y + (2*t^8.42)/(g1*g2^11*y) + (2*g1*t^8.42)/(g2^3*y) - (g2^4*t^8.709)/(g1^2*y) - (g2^12*t^8.709)/y - (g1^2*g2^20*t^8.709)/y + (g2^8*t^8.806)/y + t^8.903/(g1^2*g2^4*y) + (4*g2^4*t^8.903)/y + (g1^2*g2^12*t^8.903)/y - g2^2*t^4.452*y - (g2^3*t^6.58*y)/g1 - g1*g2^11*t^6.58*y + g2^6*t^7.355*y + (t^7.452*y)/(g1^2*g2^6) + 2*g2^2*t^7.452*y + g1^2*g2^10*t^7.452*y - (t^7.548*y)/g2^2 + (2*t^7.645*y)/g2^6 + (g2^9*t^7.935*y)/g1 + g1*g2^17*t^7.935*y + (2*g2*t^8.129*y)/g1 + 2*g1*g2^9*t^8.129*y + (2*t^8.226*y)/(g1*g2^3) + 2*g1*g2^5*t^8.226*y + (2*t^8.323*y)/(g1*g2^7) + 2*g1*g2*t^8.323*y + (2*t^8.42*y)/(g1*g2^11) + (2*g1*t^8.42*y)/g2^3 - (g2^4*t^8.709*y)/g1^2 - g2^12*t^8.709*y - g1^2*g2^20*t^8.709*y + g2^8*t^8.806*y + (t^8.903*y)/(g1^2*g2^4) + 4*g2^4*t^8.903*y + g1^2*g2^12*t^8.903*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46728 SU2adj1nf2 ${}M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{1}q_{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ 0.6069 0.7772 0.7809 [M:[1.026, 0.9481, 1.0, 1.026, 0.7104], q:[0.5331, 0.5188], qb:[0.7565, 0.2435], phi:[0.487]] t^2.131 + t^2.287 + t^2.33 + t^2.844 + t^3. + 2*t^3.078 + t^3.748 + t^3.791 + t^3.826 + t^4.262 + t^4.418 + t^4.461 + 2*t^4.574 + 2*t^4.617 + 2*t^4.66 + t^4.975 + t^5.131 + 2*t^5.209 + t^5.287 + t^5.33 + 2*t^5.365 + 2*t^5.408 + t^5.688 + t^5.844 + t^5.879 + 2*t^5.922 - 3*t^6. - t^4.461/y - t^4.461*y detail