Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2777 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4\phi_1q_2^2$ + $ M_5q_1\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ 0.627 0.8145 0.7698 [X:[], M:[1.0, 1.0323, 0.9353, 1.0323, 0.7096, 0.7096], q:[0.7581, 0.2419], qb:[0.5323, 0.5323], phi:[0.4838]] [X:[], M:[[0, 0], [4, 4], [-8, -8], [4, 4], [-9, -1], [-1, -9]], q:[[1, 1], [-1, -1]], qb:[[8, 0], [0, 8]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ M_5$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ M_3$, $ M_1$, $ M_2$, $ M_4$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ M_6^2$, $ M_5M_6$, $ M_5^2$, $ M_6q_2\tilde{q}_1$, $ \phi_1q_1q_2$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ M_3M_6$, $ M_3M_5$, $ M_1M_6$, $ M_1M_5$, $ M_2M_6$, $ M_4M_6$, $ M_2M_5$, $ M_4M_5$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_2q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ M_2q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_3^2$, $ M_1M_3$, $ M_6\phi_1q_2\tilde{q}_1$, $ M_2M_3$, $ M_3M_4$, $ M_5\phi_1q_2\tilde{q}_1$, $ M_6\phi_1q_2\tilde{q}_2$, $ M_5\phi_1q_2\tilde{q}_2$ . -5 2*t^2.13 + 2*t^2.32 + t^2.81 + t^3. + 2*t^3.1 + 2*t^3.77 + 3*t^4.26 + 4*t^4.45 + 6*t^4.65 + 2*t^4.93 + 2*t^5.13 + 4*t^5.23 + 2*t^5.32 + 4*t^5.42 + t^5.61 + t^5.81 + 5*t^5.9 - 5*t^6. + 5*t^6.1 + 2*t^6.19 + 4*t^6.39 + 6*t^6.58 - 2*t^6.68 + 10*t^6.77 + 8*t^6.97 + 3*t^7.06 + 3*t^7.26 + 6*t^7.35 + 2*t^7.45 + 6*t^7.55 + 2*t^7.65 + 11*t^7.74 + 2*t^7.93 + 8*t^8.03 - 10*t^8.13 + 8*t^8.23 - 8*t^8.32 + 11*t^8.42 + 7*t^8.52 + t^8.61 + 9*t^8.71 - 6*t^8.81 + 14*t^8.9 - t^4.45/y - (2*t^6.58)/y + t^7.35/y + (4*t^7.45)/y - t^7.55/y + (2*t^7.65)/y + (2*t^7.93)/y + (4*t^8.13)/y + (4*t^8.23)/y + (4*t^8.32)/y + (4*t^8.42)/y - (3*t^8.71)/y + t^8.81/y + (6*t^8.9)/y - t^4.45*y - 2*t^6.58*y + t^7.35*y + 4*t^7.45*y - t^7.55*y + 2*t^7.65*y + 2*t^7.93*y + 4*t^8.13*y + 4*t^8.23*y + 4*t^8.32*y + 4*t^8.42*y - 3*t^8.71*y + t^8.81*y + 6*t^8.9*y t^2.13/(g1*g2^9) + t^2.13/(g1^9*g2) + (g1^7*t^2.32)/g2 + (g2^7*t^2.32)/g1 + t^2.81/(g1^8*g2^8) + t^3. + 2*g1^4*g2^4*t^3.1 + (g1^5*t^3.77)/g2^3 + (g2^5*t^3.77)/g1^3 + t^4.26/(g1^2*g2^18) + t^4.26/(g1^10*g2^10) + t^4.26/(g1^18*g2^2) + (g1^6*t^4.45)/g2^10 + (2*t^4.45)/(g1^2*g2^2) + (g2^6*t^4.45)/g1^10 + (2*g1^14*t^4.65)/g2^2 + 2*g1^6*g2^6*t^4.65 + (2*g2^14*t^4.65)/g1^2 + t^4.93/(g1^9*g2^17) + t^4.93/(g1^17*g2^9) + t^5.13/(g1*g2^9) + t^5.13/(g1^9*g2) + (2*g1^3*t^5.23)/g2^5 + (2*g2^3*t^5.23)/g1^5 + (g1^7*t^5.32)/g2 + (g2^7*t^5.32)/g1 + 2*g1^11*g2^3*t^5.42 + 2*g1^3*g2^11*t^5.42 + t^5.61/(g1^16*g2^16) + t^5.81/(g1^8*g2^8) + (g1^4*t^5.9)/g2^12 + (3*t^5.9)/(g1^4*g2^4) + (g2^4*t^5.9)/g1^12 - 3*t^6. - (g1^8*t^6.)/g2^8 - (g2^8*t^6.)/g1^8 + (g1^12*t^6.1)/g2^4 + 3*g1^4*g2^4*t^6.1 + (g2^12*t^6.1)/g1^4 + 2*g1^8*g2^8*t^6.19 + t^6.39/(g1^3*g2^27) + t^6.39/(g1^11*g2^19) + t^6.39/(g1^19*g2^11) + t^6.39/(g1^27*g2^3) + (g1^5*t^6.58)/g2^19 + (2*t^6.58)/(g1^3*g2^11) + (2*t^6.58)/(g1^11*g2^3) + (g2^5*t^6.58)/g1^19 - (g1*t^6.68)/g2^7 - (g2*t^6.68)/g1^7 + (2*g1^13*t^6.77)/g2^11 + (3*g1^5*t^6.77)/g2^3 + (3*g2^5*t^6.77)/g1^3 + (2*g2^13*t^6.77)/g1^11 + (2*g1^21*t^6.97)/g2^3 + 2*g1^13*g2^5*t^6.97 + 2*g1^5*g2^13*t^6.97 + (2*g2^21*t^6.97)/g1^3 + t^7.06/(g1^10*g2^26) + t^7.06/(g1^18*g2^18) + t^7.06/(g1^26*g2^10) + t^7.26/(g1^2*g2^18) + t^7.26/(g1^10*g2^10) + t^7.26/(g1^18*g2^2) + (2*g1^2*t^7.35)/g2^14 + (2*t^7.35)/(g1^6*g2^6) + (2*g2^2*t^7.35)/g1^14 + (g1^6*t^7.45)/g2^10 + (g2^6*t^7.45)/g1^10 + (2*g1^10*t^7.55)/g2^6 + 2*g1^2*g2^2*t^7.55 + (2*g2^10*t^7.55)/g1^6 + (g1^14*t^7.65)/g2^2 + (g2^14*t^7.65)/g1^2 + t^7.74/(g1^17*g2^25) + t^7.74/(g1^25*g2^17) + 3*g1^18*g2^2*t^7.74 + 3*g1^10*g2^10*t^7.74 + 3*g1^2*g2^18*t^7.74 + t^7.93/(g1^9*g2^17) + t^7.93/(g1^17*g2^9) + (g1^3*t^8.03)/g2^21 + (3*t^8.03)/(g1^5*g2^13) + (3*t^8.03)/(g1^13*g2^5) + (g2^3*t^8.03)/g1^21 - (g1^7*t^8.13)/g2^17 - (4*t^8.13)/(g1*g2^9) - (4*t^8.13)/(g1^9*g2) - (g2^7*t^8.13)/g1^17 + (g1^11*t^8.23)/g2^13 + (3*g1^3*t^8.23)/g2^5 + (3*g2^3*t^8.23)/g1^5 + (g2^11*t^8.23)/g1^13 - (g1^15*t^8.32)/g2^9 - (3*g1^7*t^8.32)/g2 - (3*g2^7*t^8.32)/g1 - (g2^15*t^8.32)/g1^9 + t^8.42/(g1^24*g2^24) + (2*g1^19*t^8.42)/g2^5 + 3*g1^11*g2^3*t^8.42 + 3*g1^3*g2^11*t^8.42 + (2*g2^19*t^8.42)/g1^5 + t^8.52/(g1^4*g2^36) + t^8.52/(g1^12*g2^28) + t^8.52/(g1^20*g2^20) + t^8.52/(g1^28*g2^12) + t^8.52/(g1^36*g2^4) + g1^15*g2^7*t^8.52 + g1^7*g2^15*t^8.52 + t^8.61/(g1^16*g2^16) + (g1^4*t^8.71)/g2^28 + (2*t^8.71)/(g1^4*g2^20) + (3*t^8.71)/(g1^12*g2^12) + (2*t^8.71)/(g1^20*g2^4) + (g2^4*t^8.71)/g1^28 - t^8.81/g1^16 - t^8.81/g2^16 - (4*t^8.81)/(g1^8*g2^8) + (2*g1^12*t^8.9)/g2^20 + (3*g1^4*t^8.9)/g2^12 + (4*t^8.9)/(g1^4*g2^4) + (3*g2^4*t^8.9)/g1^12 + (2*g2^12*t^8.9)/g1^20 - t^4.45/(g1^2*g2^2*y) - t^6.58/(g1^3*g2^11*y) - t^6.58/(g1^11*g2^3*y) + t^7.35/(g1^6*g2^6*y) + (g1^6*t^7.45)/(g2^10*y) + (2*t^7.45)/(g1^2*g2^2*y) + (g2^6*t^7.45)/(g1^10*y) - (g1^2*g2^2*t^7.55)/y + (2*g1^6*g2^6*t^7.65)/y + t^7.93/(g1^9*g2^17*y) + t^7.93/(g1^17*g2^9*y) + (2*t^8.13)/(g1*g2^9*y) + (2*t^8.13)/(g1^9*g2*y) + (2*g1^3*t^8.23)/(g2^5*y) + (2*g2^3*t^8.23)/(g1^5*y) + (2*g1^7*t^8.32)/(g2*y) + (2*g2^7*t^8.32)/(g1*y) + (2*g1^11*g2^3*t^8.42)/y + (2*g1^3*g2^11*t^8.42)/y - t^8.71/(g1^4*g2^20*y) - t^8.71/(g1^12*g2^12*y) - t^8.71/(g1^20*g2^4*y) + t^8.81/(g1^8*g2^8*y) + (g1^4*t^8.9)/(g2^12*y) + (4*t^8.9)/(g1^4*g2^4*y) + (g2^4*t^8.9)/(g1^12*y) - (t^4.45*y)/(g1^2*g2^2) - (t^6.58*y)/(g1^3*g2^11) - (t^6.58*y)/(g1^11*g2^3) + (t^7.35*y)/(g1^6*g2^6) + (g1^6*t^7.45*y)/g2^10 + (2*t^7.45*y)/(g1^2*g2^2) + (g2^6*t^7.45*y)/g1^10 - g1^2*g2^2*t^7.55*y + 2*g1^6*g2^6*t^7.65*y + (t^7.93*y)/(g1^9*g2^17) + (t^7.93*y)/(g1^17*g2^9) + (2*t^8.13*y)/(g1*g2^9) + (2*t^8.13*y)/(g1^9*g2) + (2*g1^3*t^8.23*y)/g2^5 + (2*g2^3*t^8.23*y)/g1^5 + (2*g1^7*t^8.32*y)/g2 + (2*g2^7*t^8.32*y)/g1 + 2*g1^11*g2^3*t^8.42*y + 2*g1^3*g2^11*t^8.42*y - (t^8.71*y)/(g1^4*g2^20) - (t^8.71*y)/(g1^12*g2^12) - (t^8.71*y)/(g1^20*g2^4) + (t^8.81*y)/(g1^8*g2^8) + (g1^4*t^8.9*y)/g2^12 + (4*t^8.9*y)/(g1^4*g2^4) + (g2^4*t^8.9*y)/g1^12


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3291 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4\phi_1q_2^2$ + $ M_5q_1\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ + $ M_3M_7$ 0.624 0.8116 0.7689 [X:[], M:[1.0, 0.9995, 1.0011, 0.9995, 0.7507, 0.7507, 0.9989], q:[0.7499, 0.2501], qb:[0.4995, 0.4995], phi:[0.5003]] 4*t^2.25 + 4*t^3. + 2*t^3.75 + 13*t^4.5 + 14*t^5.25 + t^5.99 + 8*t^6. - t^4.5/y - t^4.5*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1775 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4\phi_1q_2^2$ + $ M_5q_1\tilde{q}_1$ 0.6069 0.7772 0.7809 [X:[], M:[1.0, 1.026, 0.9481, 1.026, 0.7104], q:[0.7565, 0.2435], qb:[0.5331, 0.5188], phi:[0.487]] t^2.13 + t^2.29 + t^2.33 + t^2.84 + t^3. + 2*t^3.08 + t^3.75 + t^3.79 + t^3.83 + t^4.26 + t^4.42 + t^4.46 + 2*t^4.57 + 2*t^4.62 + 2*t^4.66 + t^4.98 + t^5.13 + 2*t^5.21 + t^5.29 + t^5.33 + 2*t^5.36 + 2*t^5.41 + t^5.69 + t^5.84 + t^5.88 + 2*t^5.92 - 3*t^6. - t^4.46/y - t^4.46*y detail