Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46532 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ + ${ }\phi_{1}q_{1}q_{2}$ + ${ }M_{1}X_{1}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ 0.6395 0.7939 0.8055 [X:[1.6178], M:[0.3822, 0.6756, 1.1467, 0.8533, 0.7645], q:[0.8755, 0.7423], qb:[0.4489, 0.4044], phi:[0.3822]] [X:[[0, 1]], M:[[0, -1], [0, -7], [0, -3], [0, 3], [0, -2]], q:[[1, 4], [-1, -3]], qb:[[-1, 3], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{5}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}\phi_{1}^{2}$, ${ }X_{1}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}M_{5}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}^{2}$ ${}$ -2 t^2.027 + 2*t^2.293 + t^2.56 + t^3.44 + 2*t^3.573 + 2*t^3.84 + t^4.054 + 2*t^4.32 + 4*t^4.587 + 3*t^4.853 + t^5.12 + t^5.467 + 2*t^5.6 + t^5.733 + 4*t^5.867 - 2*t^6. + t^6.081 + 4*t^6.133 - t^6.267 + 2*t^6.347 + 2*t^6.4 + 4*t^6.614 + 7*t^6.88 + 6*t^7.147 - 2*t^7.28 + 3*t^7.413 + t^7.494 - 2*t^7.546 + 2*t^7.627 + 3*t^7.68 + t^7.76 + 4*t^7.894 - t^8.027 + t^8.108 + 6*t^8.16 - 5*t^8.293 + 2*t^8.374 + 6*t^8.427 - 6*t^8.56 + 4*t^8.641 + 4*t^8.693 - 2*t^8.826 + 7*t^8.907 + 2*t^8.96 - t^4.147/y - t^6.174/y - (2*t^6.44)/y + (2*t^7.32)/y + (2*t^7.587)/y + (4*t^7.853)/y + t^8.12/y - t^8.2/y - t^8.467/y + (2*t^8.6)/y - t^8.733/y + (6*t^8.867)/y - t^4.147*y - t^6.174*y - 2*t^6.44*y + 2*t^7.32*y + 2*t^7.587*y + 4*t^7.853*y + t^8.12*y - t^8.2*y - t^8.467*y + 2*t^8.6*y - t^8.733*y + 6*t^8.867*y t^2.027/g2^7 + (2*t^2.293)/g2^2 + g2^3*t^2.56 + t^3.44/g2^3 + t^3.573/g1^2 + (g1^2*t^3.573)/g2 + g1^2*g2^4*t^3.84 + (g2^5*t^3.84)/g1^2 + t^4.054/g2^14 + (2*t^4.32)/g2^9 + (4*t^4.587)/g2^4 + 3*g2*t^4.853 + g2^6*t^5.12 + t^5.467/g2^10 + (g1^2*t^5.6)/g2^8 + t^5.6/(g1^2*g2^7) + t^5.733/g2^5 + (2*g1^2*t^5.867)/g2^3 + (2*t^5.867)/(g1^2*g2^2) - 2*t^6. + t^6.081/g2^21 + 2*g1^2*g2^2*t^6.133 + (2*g2^3*t^6.133)/g1^2 - g2^5*t^6.267 + (2*t^6.347)/g2^16 + g1^2*g2^7*t^6.4 + (g2^8*t^6.4)/g1^2 + (4*t^6.614)/g2^11 + (7*t^6.88)/g2^6 + t^7.147/g1^4 + (g1^4*t^7.147)/g2^2 + (4*t^7.147)/g2 - g1^2*g2*t^7.28 - (g2^2*t^7.28)/g1^2 + g1^4*g2^3*t^7.413 + g2^4*t^7.413 + (g2^5*t^7.413)/g1^4 + t^7.494/g2^17 - g1^2*g2^6*t^7.546 - (g2^7*t^7.546)/g1^2 + (g1^2*t^7.627)/g2^15 + t^7.627/(g1^2*g2^14) + g1^4*g2^8*t^7.68 + g2^9*t^7.68 + (g2^10*t^7.68)/g1^4 + t^7.76/g2^12 + (2*g1^2*t^7.894)/g2^10 + (2*t^7.894)/(g1^2*g2^9) - t^8.027/g2^7 + t^8.108/g2^28 + (3*g1^2*t^8.16)/g2^5 + (3*t^8.16)/(g1^2*g2^4) - (5*t^8.293)/g2^2 + (2*t^8.374)/g2^23 + 3*g1^2*t^8.427 + (3*g2*t^8.427)/g1^2 - 6*g2^3*t^8.56 + (4*t^8.641)/g2^18 + 2*g1^2*g2^5*t^8.693 + (2*g2^6*t^8.693)/g1^2 - 2*g2^8*t^8.826 + (7*t^8.907)/g2^13 + g1^2*g2^10*t^8.96 + (g2^11*t^8.96)/g1^2 - t^4.147/(g2*y) - t^6.174/(g2^8*y) - (2*t^6.44)/(g2^3*y) + (2*t^7.32)/(g2^9*y) + (2*t^7.587)/(g2^4*y) + (4*g2*t^7.853)/y + (g2^6*t^8.12)/y - t^8.2/(g2^15*y) - t^8.467/(g2^10*y) + (g1^2*t^8.6)/(g2^8*y) + t^8.6/(g1^2*g2^7*y) - t^8.733/(g2^5*y) + (3*g1^2*t^8.867)/(g2^3*y) + (3*t^8.867)/(g1^2*g2^2*y) - (t^4.147*y)/g2 - (t^6.174*y)/g2^8 - (2*t^6.44*y)/g2^3 + (2*t^7.32*y)/g2^9 + (2*t^7.587*y)/g2^4 + 4*g2*t^7.853*y + g2^6*t^8.12*y - (t^8.2*y)/g2^15 - (t^8.467*y)/g2^10 + (g1^2*t^8.6*y)/g2^8 + (t^8.6*y)/(g1^2*g2^7) - (t^8.733*y)/g2^5 + (3*g1^2*t^8.867*y)/g2^3 + (3*t^8.867*y)/(g1^2*g2^2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46952 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ + ${ }\phi_{1}q_{1}q_{2}$ + ${ }M_{1}X_{1}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}M_{6}$ 0.6187 0.7531 0.8216 [X:[1.6168], M:[0.3832, 0.6824, 1.1496, 0.8504, 0.7664, 1.3176], q:[0.8714, 0.7454], qb:[0.4462, 0.4042], phi:[0.3832]] 2*t^2.299 + t^2.551 + t^3.449 + 2*t^3.575 + 2*t^3.827 + t^3.953 + 3*t^4.598 + 3*t^4.85 + t^5.102 + t^5.748 + 2*t^5.874 - 2*t^6. - t^4.15/y - t^4.15*y detail
46994 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ + ${ }\phi_{1}q_{1}q_{2}$ + ${ }M_{1}X_{1}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}^{2}$ 0.5788 0.7216 0.802 [X:[1.5714], M:[0.4286, 1.0, 1.2857, 0.7143, 0.8571], q:[0.6786, 0.8929], qb:[0.3214, 0.3929], phi:[0.4286]] t^2.143 + 2*t^2.571 + t^3. + 2*t^3.214 + 2*t^3.643 + t^3.857 + t^4.286 + 3*t^4.714 + 4*t^5.143 + 2*t^5.357 + t^5.571 + 4*t^5.786 - t^6. - t^4.286/y - t^4.286*y detail {a: 1815/3136, c: 2263/3136, X1: 11/7, M1: 3/7, M2: 1, M3: 9/7, M4: 5/7, M5: 6/7, q1: 19/28, q2: 25/28, qb1: 9/28, qb2: 11/28, phi1: 3/7}
48120 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ + ${ }\phi_{1}q_{1}q_{2}$ + ${ }M_{1}X_{1}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}X_{2}$ 0.639 0.7917 0.8072 [X:[1.6191, 1.3335], M:[0.3809, 0.6665, 1.1428, 0.8572, 0.7619, 0.7002], q:[0.8741, 0.745], qb:[0.4594, 0.3978], phi:[0.3809]] t^2.101 + 2*t^2.286 + t^2.572 + t^3.428 + t^3.53 + t^3.613 + t^3.816 + t^4. + t^4.201 + 2*t^4.386 + 3*t^4.571 + t^4.672 + 3*t^4.857 + t^5.143 + t^5.529 + t^5.63 + 2*t^5.714 + t^5.815 + t^5.899 + t^5.916 - 2*t^6. - t^4.143/y - t^4.143*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46187 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ + ${ }\phi_{1}q_{1}q_{2}$ + ${ }M_{1}X_{1}$ 0.6212 0.7607 0.8166 [X:[1.6162], M:[0.3838, 0.6865, 1.1513, 0.8487], q:[0.8689, 0.7473], qb:[0.4446, 0.4041], phi:[0.3838]] t^2.059 + t^2.303 + t^2.546 + t^3.454 + 2*t^3.576 + t^3.697 + 2*t^3.819 + t^4.119 + t^4.362 + 2*t^4.605 + 2*t^4.849 + t^5.092 + t^5.513 + 2*t^5.635 + t^5.757 + 2*t^5.878 - t^6. - t^4.151/y - t^4.151*y detail