Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2750 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1q_2\tilde{q}_2$ + $ M_4X_1$ + $ M_5\phi_1q_1\tilde{q}_1$ 0.6395 0.7939 0.8055 [X:[1.6178], M:[0.8533, 0.6756, 1.1467, 0.3822, 0.7645], q:[0.4044, 0.7423], qb:[0.4489, 0.8755], phi:[0.3822]] [X:[[0, 1]], M:[[0, 3], [0, -7], [0, -3], [0, -1], [0, -2]], q:[[1, -4], [-1, 1]], qb:[[-1, 7], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_5$, $ \phi_1^2$, $ M_1$, $ M_3$, $ \phi_1q_1^2$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_2^2$, $ M_2M_5$, $ M_2\phi_1^2$, $ M_1M_2$, $ M_5^2$, $ M_5\phi_1^2$, $ \phi_1^4$, $ \phi_1q_1q_2$, $ M_1M_5$, $ M_1\phi_1^2$, $ X_1$, $ M_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2M_3$, $ M_2\phi_1q_1^2$, $ \phi_1q_2^2$, $ M_3M_5$, $ M_3\phi_1^2$, $ M_5\phi_1q_1^2$, $ \phi_1^3q_1^2$, $ M_5q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$ . -2 t^2.03 + 2*t^2.29 + t^2.56 + t^3.44 + 2*t^3.57 + 2*t^3.84 + t^4.05 + 2*t^4.32 + 4*t^4.59 + 3*t^4.85 + t^5.12 + t^5.47 + 2*t^5.6 + t^5.73 + 4*t^5.87 - 2*t^6. + t^6.08 + 4*t^6.13 - t^6.27 + 2*t^6.35 + 2*t^6.4 + 4*t^6.61 + 7*t^6.88 + 6*t^7.15 - 2*t^7.28 + 3*t^7.41 + t^7.49 - 2*t^7.55 + 2*t^7.63 + 3*t^7.68 + t^7.76 + 4*t^7.89 - t^8.03 + t^8.11 + 6*t^8.16 - 5*t^8.29 + 2*t^8.37 + 6*t^8.43 - 6*t^8.56 + 4*t^8.64 + 4*t^8.69 - 2*t^8.83 + 7*t^8.91 + 2*t^8.96 - t^4.15/y - t^6.17/y - (2*t^6.44)/y + (2*t^7.32)/y + (2*t^7.59)/y + (4*t^7.85)/y + t^8.12/y - t^8.2/y - t^8.47/y + (2*t^8.6)/y - t^8.73/y + (6*t^8.87)/y - t^4.15*y - t^6.17*y - 2*t^6.44*y + 2*t^7.32*y + 2*t^7.59*y + 4*t^7.85*y + t^8.12*y - t^8.2*y - t^8.47*y + 2*t^8.6*y - t^8.73*y + 6*t^8.87*y t^2.03/g2^7 + (2*t^2.29)/g2^2 + g2^3*t^2.56 + t^3.44/g2^3 + (g1^2*t^3.57)/g2^9 + (g2^8*t^3.57)/g1^2 + (g1^2*t^3.84)/g2^4 + (g2^13*t^3.84)/g1^2 + t^4.05/g2^14 + (2*t^4.32)/g2^9 + (4*t^4.59)/g2^4 + 3*g2*t^4.85 + g2^6*t^5.12 + t^5.47/g2^10 + (g1^2*t^5.6)/g2^16 + (g2*t^5.6)/g1^2 + t^5.73/g2^5 + (2*g1^2*t^5.87)/g2^11 + (2*g2^6*t^5.87)/g1^2 - 2*t^6. + t^6.08/g2^21 + (2*g1^2*t^6.13)/g2^6 + (2*g2^11*t^6.13)/g1^2 - g2^5*t^6.27 + (2*t^6.35)/g2^16 + (g1^2*t^6.4)/g2 + (g2^16*t^6.4)/g1^2 + (4*t^6.61)/g2^11 + (7*t^6.88)/g2^6 + (g1^4*t^7.15)/g2^18 + (4*t^7.15)/g2 + (g2^16*t^7.15)/g1^4 - (g1^2*t^7.28)/g2^7 - (g2^10*t^7.28)/g1^2 + (g1^4*t^7.41)/g2^13 + g2^4*t^7.41 + (g2^21*t^7.41)/g1^4 + t^7.49/g2^17 - (g1^2*t^7.55)/g2^2 - (g2^15*t^7.55)/g1^2 + (g1^2*t^7.63)/g2^23 + t^7.63/(g1^2*g2^6) + (g1^4*t^7.68)/g2^8 + g2^9*t^7.68 + (g2^26*t^7.68)/g1^4 + t^7.76/g2^12 + (2*g1^2*t^7.89)/g2^18 + (2*t^7.89)/(g1^2*g2) - t^8.03/g2^7 + t^8.11/g2^28 + (3*g1^2*t^8.16)/g2^13 + (3*g2^4*t^8.16)/g1^2 - (5*t^8.29)/g2^2 + (2*t^8.37)/g2^23 + (3*g1^2*t^8.43)/g2^8 + (3*g2^9*t^8.43)/g1^2 - 6*g2^3*t^8.56 + (4*t^8.64)/g2^18 + (2*g1^2*t^8.69)/g2^3 + (2*g2^14*t^8.69)/g1^2 - 2*g2^8*t^8.83 + (7*t^8.91)/g2^13 + g1^2*g2^2*t^8.96 + (g2^19*t^8.96)/g1^2 - t^4.15/(g2*y) - t^6.17/(g2^8*y) - (2*t^6.44)/(g2^3*y) + (2*t^7.32)/(g2^9*y) + (2*t^7.59)/(g2^4*y) + (4*g2*t^7.85)/y + (g2^6*t^8.12)/y - t^8.2/(g2^15*y) - t^8.47/(g2^10*y) + (g1^2*t^8.6)/(g2^16*y) + (g2*t^8.6)/(g1^2*y) - t^8.73/(g2^5*y) + (3*g1^2*t^8.87)/(g2^11*y) + (3*g2^6*t^8.87)/(g1^2*y) - (t^4.15*y)/g2 - (t^6.17*y)/g2^8 - (2*t^6.44*y)/g2^3 + (2*t^7.32*y)/g2^9 + (2*t^7.59*y)/g2^4 + 4*g2*t^7.85*y + g2^6*t^8.12*y - (t^8.2*y)/g2^15 - (t^8.47*y)/g2^10 + (g1^2*t^8.6*y)/g2^16 + (g2*t^8.6*y)/g1^2 - (t^8.73*y)/g2^5 + (3*g1^2*t^8.87*y)/g2^11 + (3*g2^6*t^8.87*y)/g1^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3263 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1q_2\tilde{q}_2$ + $ M_4X_1$ + $ M_5\phi_1q_1\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ + $ M_2X_2$ 0.639 0.7917 0.8072 [X:[1.6191, 1.3335], M:[0.8572, 0.6665, 1.1428, 0.3809, 0.7619, 0.7002], q:[0.4117, 0.7311], qb:[0.4455, 0.888], phi:[0.3809]] t^2.1 + 2*t^2.29 + t^2.57 + t^3.43 + t^3.53 + t^3.61 + t^3.82 + t^4. + t^4.2 + 2*t^4.39 + 3*t^4.57 + t^4.67 + 3*t^4.86 + t^5.14 + t^5.53 + t^5.63 + 2*t^5.71 + t^5.82 + t^5.9 + t^5.92 - 2*t^6. - t^4.14/y - t^4.14*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1746 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1q_2\tilde{q}_2$ + $ M_4X_1$ 0.6212 0.7607 0.8166 [X:[1.6162], M:[0.8487, 0.6865, 1.1513, 0.3838], q:[0.4041, 0.7473], qb:[0.4446, 0.8689], phi:[0.3838]] t^2.06 + t^2.3 + t^2.55 + t^3.45 + 2*t^3.58 + t^3.7 + 2*t^3.82 + t^4.12 + t^4.36 + 2*t^4.61 + 2*t^4.85 + t^5.09 + t^5.51 + 2*t^5.64 + t^5.76 + 2*t^5.88 - t^6. - t^4.15/y - t^4.15*y detail