Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46504 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ 0.7088 0.8952 0.7917 [M:[1.1055, 0.7845, 0.6835, 1.0045, 0.6745], q:[0.4391, 0.4554], qb:[0.7764, 0.5401], phi:[0.4473]] [M:[[0, 4], [1, 3], [0, -12], [-1, -11], [2, 10]], q:[[-1, -4], [1, 0]], qb:[[0, 1], [0, 11]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{5}$, ${ }M_{3}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{4}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{5}^{2}$, ${ }M_{3}M_{5}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{5}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{5}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ ${}$ -2 t^2.024 + t^2.051 + t^2.354 + t^2.684 + t^2.938 + t^3.014 + t^3.316 + t^3.695 + t^4.025 + t^4.047 + 2*t^4.074 + t^4.101 + t^4.279 + t^4.328 + t^4.377 + t^4.404 + t^4.582 + 2*t^4.707 + t^4.734 + t^4.961 + t^4.988 + 2*t^5.037 + t^5.064 + t^5.291 + t^5.34 + 3*t^5.367 + t^5.621 + t^5.67 + t^5.719 + t^5.875 - 2*t^6. + t^6.027 + t^6.049 + t^6.071 + t^6.076 + 2*t^6.098 + 2*t^6.125 + t^6.152 + t^6.33 + t^6.352 + 2*t^6.379 + t^6.401 + 2*t^6.428 + t^6.455 + t^6.606 + 2*t^6.633 + t^6.682 + t^6.709 + 2*t^6.731 + 3*t^6.758 + t^6.785 + t^6.936 + t^6.985 + 2*t^7.012 + t^7.039 + 3*t^7.061 + 2*t^7.088 + t^7.115 + t^7.217 + t^7.266 - t^7.293 + t^7.315 + t^7.364 + 4*t^7.391 + 3*t^7.418 + t^7.52 + t^7.645 + t^7.694 + 3*t^7.721 + t^7.743 + t^7.77 + t^7.899 - t^8.024 + t^8.073 + t^8.078 + t^8.094 + t^8.1 + 2*t^8.121 + t^8.127 + 3*t^8.148 + 2*t^8.175 + t^8.202 - 2*t^8.354 + t^8.375 + 2*t^8.381 + 3*t^8.402 + t^8.424 + t^8.429 + 2*t^8.451 + 2*t^8.478 + t^8.505 + t^8.559 + t^8.63 - t^8.635 + 2*t^8.657 - t^8.684 + t^8.705 + 2*t^8.732 + 2*t^8.754 + t^8.759 + 4*t^8.781 + 3*t^8.808 + t^8.813 + t^8.835 + t^8.862 + t^8.911 - 3*t^8.938 + t^8.959 - t^4.342/y - t^6.365/y - t^6.392/y - t^6.695/y + t^7.074/y + t^7.328/y - t^7.355/y + t^7.377/y + t^7.404/y + t^7.707/y + t^7.734/y + t^7.961/y + (2*t^7.988)/y + (2*t^8.037)/y + t^8.064/y + (2*t^8.291)/y + t^8.318/y + t^8.34/y + (2*t^8.367)/y - t^8.389/y - t^8.416/y - t^8.443/y + t^8.621/y + t^8.67/y + t^8.697/y + t^8.951/y - t^4.342*y - t^6.365*y - t^6.392*y - t^6.695*y + t^7.074*y + t^7.328*y - t^7.355*y + t^7.377*y + t^7.404*y + t^7.707*y + t^7.734*y + t^7.961*y + 2*t^7.988*y + 2*t^8.037*y + t^8.064*y + 2*t^8.291*y + t^8.318*y + t^8.34*y + 2*t^8.367*y - t^8.389*y - t^8.416*y - t^8.443*y + t^8.621*y + t^8.67*y + t^8.697*y + t^8.951*y g1^2*g2^10*t^2.024 + t^2.051/g2^12 + g1*g2^3*t^2.354 + t^2.684/g2^4 + (g2^7*t^2.938)/g1 + t^3.014/(g1*g2^11) + g2^4*t^3.316 + g1*g2*t^3.695 + t^4.025/g2^6 + g1^4*g2^20*t^4.047 + (2*g1^2*t^4.074)/g2^2 + t^4.101/g2^24 + (g2^5*t^4.279)/g1 + g1*g2^9*t^4.328 + g1^3*g2^13*t^4.377 + (g1*t^4.404)/g2^9 + g2^20*t^4.582 + 2*g1^2*g2^6*t^4.707 + t^4.734/g2^16 + g1*g2^17*t^4.961 + t^4.988/(g1*g2^5) + (2*g1*t^5.037)/g2 + t^5.064/(g1*g2^23) + g2^10*t^5.291 + g1^2*g2^14*t^5.34 + (3*t^5.367)/g2^8 + (g2^3*t^5.621)/g1 + g1*g2^7*t^5.67 + g1^3*g2^11*t^5.719 + (g2^14*t^5.875)/g1^2 - 2*t^6. + t^6.027/(g1^2*g2^22) + g1^2*g2^4*t^6.049 + g1^6*g2^30*t^6.071 + t^6.076/g2^18 + 2*g1^4*g2^8*t^6.098 + (2*g1^2*t^6.125)/g2^14 + t^6.152/g2^36 + t^6.33/(g1*g2^7) + g1^3*g2^19*t^6.352 + (2*g1*t^6.379)/g2^3 + g1^5*g2^23*t^6.401 + 2*g1^3*g2*t^6.428 + (g1*t^6.455)/g2^21 + g1^2*g2^30*t^6.606 + 2*g2^8*t^6.633 + g1^2*g2^12*t^6.682 + t^6.709/g2^10 + 2*g1^4*g2^16*t^6.731 + (3*g1^2*t^6.758)/g2^6 + t^6.785/g2^28 + g1*g2^23*t^6.936 + g1^3*g2^27*t^6.985 + 2*g1*g2^5*t^7.012 + t^7.039/(g1*g2^17) + 3*g1^3*g2^9*t^7.061 + (2*g1*t^7.088)/g2^13 + t^7.115/(g1*g2^35) + (g2^12*t^7.217)/g1^2 + g2^16*t^7.266 - t^7.293/(g1^2*g2^6) + g1^2*g2^20*t^7.315 + g1^4*g2^24*t^7.364 + 4*g1^2*g2^2*t^7.391 + (3*t^7.418)/g2^20 + (g2^27*t^7.52)/g1 + g1*g2^13*t^7.645 + g1^3*g2^17*t^7.694 + (3*g1*t^7.721)/g2^5 + g1^5*g2^21*t^7.743 + (g1^3*t^7.77)/g2 + g2^24*t^7.899 - g1^2*g2^10*t^8.024 + g1^4*g2^14*t^8.073 + t^8.078/(g1^2*g2^34) + g1^8*g2^40*t^8.094 + (g1^2*t^8.1)/g2^8 + 2*g1^6*g2^18*t^8.121 + t^8.127/g2^30 + (3*g1^4*t^8.148)/g2^4 + (2*g1^2*t^8.175)/g2^26 + t^8.202/g2^48 - 2*g1*g2^3*t^8.354 + g1^5*g2^29*t^8.375 + (2*t^8.381)/(g1*g2^19) + 3*g1^3*g2^7*t^8.402 + g1^7*g2^33*t^8.424 + (g1*t^8.429)/g2^15 + 2*g1^5*g2^11*t^8.451 + (2*g1^3*t^8.478)/g2^11 + (g1*t^8.505)/g2^33 + (g2^10*t^8.559)/g1^2 + g1^4*g2^40*t^8.63 - t^8.635/(g1^2*g2^8) + 2*g1^2*g2^18*t^8.657 - t^8.684/g2^4 + g1^4*g2^22*t^8.705 + 2*g1^2*t^8.732 + 2*g1^6*g2^26*t^8.754 + t^8.759/g2^22 + 4*g1^4*g2^4*t^8.781 + (3*g1^2*t^8.808)/g2^18 + (g2^21*t^8.813)/g1^3 + t^8.835/g2^40 + (g2^25*t^8.862)/g1 + g1*g2^29*t^8.911 - (3*g2^7*t^8.938)/g1 + g1^3*g2^33*t^8.959 - t^4.342/(g2^2*y) - (g1^2*g2^8*t^6.365)/y - t^6.392/(g2^14*y) - (g1*g2*t^6.695)/y + (g1^2*t^7.074)/(g2^2*y) + (g1*g2^9*t^7.328)/y - t^7.355/(g1*g2^13*y) + (g1^3*g2^13*t^7.377)/y + (g1*t^7.404)/(g2^9*y) + (g1^2*g2^6*t^7.707)/y + t^7.734/(g2^16*y) + (g1*g2^17*t^7.961)/y + (2*t^7.988)/(g1*g2^5*y) + (2*g1*t^8.037)/(g2*y) + t^8.064/(g1*g2^23*y) + (2*g2^10*t^8.291)/y + t^8.318/(g1^2*g2^12*y) + (g1^2*g2^14*t^8.34)/y + (2*t^8.367)/(g2^8*y) - (g1^4*g2^18*t^8.389)/y - (g1^2*t^8.416)/(g2^4*y) - t^8.443/(g2^26*y) + (g2^3*t^8.621)/(g1*y) + (g1*g2^7*t^8.67)/y + t^8.697/(g1*g2^15*y) + t^8.951/(g1^2*g2^4*y) - (t^4.342*y)/g2^2 - g1^2*g2^8*t^6.365*y - (t^6.392*y)/g2^14 - g1*g2*t^6.695*y + (g1^2*t^7.074*y)/g2^2 + g1*g2^9*t^7.328*y - (t^7.355*y)/(g1*g2^13) + g1^3*g2^13*t^7.377*y + (g1*t^7.404*y)/g2^9 + g1^2*g2^6*t^7.707*y + (t^7.734*y)/g2^16 + g1*g2^17*t^7.961*y + (2*t^7.988*y)/(g1*g2^5) + (2*g1*t^8.037*y)/g2 + (t^8.064*y)/(g1*g2^23) + 2*g2^10*t^8.291*y + (t^8.318*y)/(g1^2*g2^12) + g1^2*g2^14*t^8.34*y + (2*t^8.367*y)/g2^8 - g1^4*g2^18*t^8.389*y - (g1^2*t^8.416*y)/g2^4 - (t^8.443*y)/g2^26 + (g2^3*t^8.621*y)/g1 + g1*g2^7*t^8.67*y + (t^8.697*y)/(g1*g2^15) + (t^8.951*y)/(g1^2*g2^4)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47113 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{5}\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{3}X_{1}$ 0.6011 0.7433 0.8087 [X:[1.3686], M:[1.1229, 0.959, 0.6314, 0.7952, 1.041], q:[0.2602, 0.6169], qb:[0.7807, 0.5879], phi:[0.4386]] t^2.386 + t^2.544 + t^2.631 + t^2.877 + t^3.123 + t^3.369 + t^3.86 + t^3.947 + t^4.106 + t^4.193 + t^4.771 + t^4.843 + t^4.93 + t^5.017 + t^5.089 + t^5.176 + 2*t^5.263 + t^5.422 + 2*t^5.509 + t^5.667 + 2*t^5.754 - t^6. - t^4.316/y - t^4.316*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46135 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ 0.688 0.8541 0.8054 [M:[1.1058, 0.7867, 0.6825, 1.0016], q:[0.4368, 0.4574], qb:[0.7765, 0.5411], phi:[0.4471]] t^2.047 + t^2.36 + t^2.682 + t^2.934 + t^3.005 + t^3.318 + t^3.701 + t^3.962 + t^4.024 + t^4.085 + t^4.095 + t^4.275 + t^4.336 + t^4.408 + t^4.588 + t^4.72 + t^4.73 + t^4.981 + t^5.043 + t^5.052 + t^5.294 + 3*t^5.365 + t^5.616 + t^5.678 + t^5.867 - 2*t^6. - t^4.341/y - t^4.341*y detail