Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46504 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1\phi_1^2$ + $ \phi_1\tilde{q}_1^2$ + $ M_5\phi_1q_1^2$ 0.7088 0.8952 0.7917 [X:[], M:[1.1055, 0.7845, 0.6835, 1.0045, 0.6745], q:[0.4391, 0.4554], qb:[0.7764, 0.5401], phi:[0.4473]] [X:[], M:[[0, 4], [1, 3], [0, -12], [-1, -11], [2, 10]], q:[[-1, -4], [1, 0]], qb:[[0, 1], [0, 11]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ M_3$, $ M_2$, $ \phi_1^2$, $ q_1\tilde{q}_2$, $ M_4$, $ M_1$, $ q_2\tilde{q}_1$, $ \phi_1q_1q_2$, $ M_5^2$, $ M_3M_5$, $ \phi_1q_2^2$, $ M_3^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ M_2M_5$, $ M_2M_3$, $ \phi_1\tilde{q}_2^2$, $ M_2^2$, $ M_5\phi_1^2$, $ M_3\phi_1^2$, $ M_5q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ M_3q_1\tilde{q}_2$, $ M_4M_5$, $ M_2\phi_1^2$, $ \phi_1q_2\tilde{q}_1$, $ M_3M_4$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1M_5$, $ M_1M_3$, $ M_2M_4$, $ \phi_1^4$, $ \phi_1^2q_1\tilde{q}_2$, $ M_1M_2$, $ M_5q_2\tilde{q}_1$, $ q_1^2\tilde{q}_2^2$ . -2 t^2.02 + t^2.05 + t^2.35 + t^2.68 + t^2.94 + t^3.01 + t^3.32 + t^3.7 + t^4.03 + t^4.05 + 2*t^4.07 + t^4.1 + t^4.28 + t^4.33 + t^4.38 + t^4.4 + t^4.58 + 2*t^4.71 + t^4.73 + t^4.96 + t^4.99 + 2*t^5.04 + t^5.06 + t^5.29 + t^5.34 + 3*t^5.37 + t^5.62 + t^5.67 + t^5.72 + t^5.88 - 2*t^6. + t^6.03 + t^6.05 + t^6.07 + t^6.08 + 2*t^6.1 + 2*t^6.12 + t^6.15 + t^6.33 + t^6.35 + 2*t^6.38 + t^6.4 + 2*t^6.43 + t^6.45 + t^6.61 + 2*t^6.63 + t^6.68 + t^6.71 + 2*t^6.73 + 3*t^6.76 + t^6.78 + t^6.94 + t^6.98 + 2*t^7.01 + t^7.04 + 3*t^7.06 + 2*t^7.09 + t^7.11 + t^7.22 + t^7.27 - t^7.29 + t^7.31 + t^7.36 + 4*t^7.39 + 3*t^7.42 + t^7.52 + t^7.64 + t^7.69 + 3*t^7.72 + t^7.74 + t^7.77 + t^7.9 - t^8.02 + t^8.07 + t^8.08 + t^8.09 + t^8.1 + 2*t^8.12 + t^8.13 + 3*t^8.15 + 2*t^8.18 + t^8.2 - 2*t^8.35 + 3*t^8.38 + 3*t^8.4 + t^8.42 + t^8.43 + 2*t^8.45 + 2*t^8.48 + t^8.51 + t^8.56 + 2*t^8.66 - t^8.68 + t^8.71 + 2*t^8.73 + 2*t^8.75 + t^8.76 + 4*t^8.78 + 4*t^8.81 + t^8.84 + t^8.86 + t^8.91 - 3*t^8.94 + t^8.96 - t^4.34/y - t^6.37/y - t^6.39/y - t^6.7/y + t^7.07/y + t^7.33/y - t^7.36/y + t^7.38/y + t^7.4/y + t^7.71/y + t^7.73/y + t^7.96/y + (2*t^7.99)/y + (2*t^8.04)/y + t^8.06/y + (2*t^8.29)/y + t^8.32/y + t^8.34/y + (2*t^8.37)/y - t^8.39/y - t^8.42/y - t^8.44/y + t^8.62/y + t^8.67/y + t^8.7/y + t^8.95/y - t^4.34*y - t^6.37*y - t^6.39*y - t^6.7*y + t^7.07*y + t^7.33*y - t^7.36*y + t^7.38*y + t^7.4*y + t^7.71*y + t^7.73*y + t^7.96*y + 2*t^7.99*y + 2*t^8.04*y + t^8.06*y + 2*t^8.29*y + t^8.32*y + t^8.34*y + 2*t^8.37*y - t^8.39*y - t^8.42*y - t^8.44*y + t^8.62*y + t^8.67*y + t^8.7*y + t^8.95*y g1^2*g2^10*t^2.02 + t^2.05/g2^12 + g1*g2^3*t^2.35 + t^2.68/g2^4 + (g2^7*t^2.94)/g1 + t^3.01/(g1*g2^11) + g2^4*t^3.32 + g1*g2*t^3.7 + t^4.03/g2^6 + g1^4*g2^20*t^4.05 + (2*g1^2*t^4.07)/g2^2 + t^4.1/g2^24 + (g2^5*t^4.28)/g1 + g1*g2^9*t^4.33 + g1^3*g2^13*t^4.38 + (g1*t^4.4)/g2^9 + g2^20*t^4.58 + 2*g1^2*g2^6*t^4.71 + t^4.73/g2^16 + g1*g2^17*t^4.96 + t^4.99/(g1*g2^5) + (2*g1*t^5.04)/g2 + t^5.06/(g1*g2^23) + g2^10*t^5.29 + g1^2*g2^14*t^5.34 + (3*t^5.37)/g2^8 + (g2^3*t^5.62)/g1 + g1*g2^7*t^5.67 + g1^3*g2^11*t^5.72 + (g2^14*t^5.88)/g1^2 - 2*t^6. + t^6.03/(g1^2*g2^22) + g1^2*g2^4*t^6.05 + g1^6*g2^30*t^6.07 + t^6.08/g2^18 + 2*g1^4*g2^8*t^6.1 + (2*g1^2*t^6.12)/g2^14 + t^6.15/g2^36 + t^6.33/(g1*g2^7) + g1^3*g2^19*t^6.35 + (2*g1*t^6.38)/g2^3 + g1^5*g2^23*t^6.4 + 2*g1^3*g2*t^6.43 + (g1*t^6.45)/g2^21 + g1^2*g2^30*t^6.61 + 2*g2^8*t^6.63 + g1^2*g2^12*t^6.68 + t^6.71/g2^10 + 2*g1^4*g2^16*t^6.73 + (3*g1^2*t^6.76)/g2^6 + t^6.78/g2^28 + g1*g2^23*t^6.94 + g1^3*g2^27*t^6.98 + 2*g1*g2^5*t^7.01 + t^7.04/(g1*g2^17) + 3*g1^3*g2^9*t^7.06 + (2*g1*t^7.09)/g2^13 + t^7.11/(g1*g2^35) + (g2^12*t^7.22)/g1^2 + g2^16*t^7.27 - t^7.29/(g1^2*g2^6) + g1^2*g2^20*t^7.31 + g1^4*g2^24*t^7.36 + 4*g1^2*g2^2*t^7.39 + (3*t^7.42)/g2^20 + (g2^27*t^7.52)/g1 + g1*g2^13*t^7.64 + g1^3*g2^17*t^7.69 + (3*g1*t^7.72)/g2^5 + g1^5*g2^21*t^7.74 + (g1^3*t^7.77)/g2 + g2^24*t^7.9 - g1^2*g2^10*t^8.02 + g1^4*g2^14*t^8.07 + t^8.08/(g1^2*g2^34) + g1^8*g2^40*t^8.09 + (g1^2*t^8.1)/g2^8 + 2*g1^6*g2^18*t^8.12 + t^8.13/g2^30 + (3*g1^4*t^8.15)/g2^4 + (2*g1^2*t^8.18)/g2^26 + t^8.2/g2^48 - 2*g1*g2^3*t^8.35 + (2*t^8.38)/(g1*g2^19) + g1^5*g2^29*t^8.38 + 3*g1^3*g2^7*t^8.4 + g1^7*g2^33*t^8.42 + (g1*t^8.43)/g2^15 + 2*g1^5*g2^11*t^8.45 + (2*g1^3*t^8.48)/g2^11 + (g1*t^8.51)/g2^33 + (g2^10*t^8.56)/g1^2 - t^8.63/(g1^2*g2^8) + g1^4*g2^40*t^8.63 + 2*g1^2*g2^18*t^8.66 - t^8.68/g2^4 + g1^4*g2^22*t^8.71 + 2*g1^2*t^8.73 + 2*g1^6*g2^26*t^8.75 + t^8.76/g2^22 + 4*g1^4*g2^4*t^8.78 + (3*g1^2*t^8.81)/g2^18 + (g2^21*t^8.81)/g1^3 + t^8.84/g2^40 + (g2^25*t^8.86)/g1 + g1*g2^29*t^8.91 - (3*g2^7*t^8.94)/g1 + g1^3*g2^33*t^8.96 - t^4.34/(g2^2*y) - (g1^2*g2^8*t^6.37)/y - t^6.39/(g2^14*y) - (g1*g2*t^6.7)/y + (g1^2*t^7.07)/(g2^2*y) + (g1*g2^9*t^7.33)/y - t^7.36/(g1*g2^13*y) + (g1^3*g2^13*t^7.38)/y + (g1*t^7.4)/(g2^9*y) + (g1^2*g2^6*t^7.71)/y + t^7.73/(g2^16*y) + (g1*g2^17*t^7.96)/y + (2*t^7.99)/(g1*g2^5*y) + (2*g1*t^8.04)/(g2*y) + t^8.06/(g1*g2^23*y) + (2*g2^10*t^8.29)/y + t^8.32/(g1^2*g2^12*y) + (g1^2*g2^14*t^8.34)/y + (2*t^8.37)/(g2^8*y) - (g1^4*g2^18*t^8.39)/y - (g1^2*t^8.42)/(g2^4*y) - t^8.44/(g2^26*y) + (g2^3*t^8.62)/(g1*y) + (g1*g2^7*t^8.67)/y + t^8.7/(g1*g2^15*y) + t^8.95/(g1^2*g2^4*y) - (t^4.34*y)/g2^2 - g1^2*g2^8*t^6.37*y - (t^6.39*y)/g2^14 - g1*g2*t^6.7*y + (g1^2*t^7.07*y)/g2^2 + g1*g2^9*t^7.33*y - (t^7.36*y)/(g1*g2^13) + g1^3*g2^13*t^7.38*y + (g1*t^7.4*y)/g2^9 + g1^2*g2^6*t^7.71*y + (t^7.73*y)/g2^16 + g1*g2^17*t^7.96*y + (2*t^7.99*y)/(g1*g2^5) + (2*g1*t^8.04*y)/g2 + (t^8.06*y)/(g1*g2^23) + 2*g2^10*t^8.29*y + (t^8.32*y)/(g1^2*g2^12) + g1^2*g2^14*t^8.34*y + (2*t^8.37*y)/g2^8 - g1^4*g2^18*t^8.39*y - (g1^2*t^8.42*y)/g2^4 - (t^8.44*y)/g2^26 + (g2^3*t^8.62*y)/g1 + g1*g2^7*t^8.67*y + (t^8.7*y)/(g1*g2^15) + (t^8.95*y)/(g1^2*g2^4)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47113 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1\phi_1^2$ + $ \phi_1\tilde{q}_1^2$ + $ M_5\phi_1q_1^2$ + $ M_2M_5$ + $ M_3X_1$ 0.6011 0.7433 0.8087 [X:[1.3686], M:[1.1229, 0.959, 0.6314, 0.7952, 1.041], q:[0.2602, 0.6169], qb:[0.7807, 0.5879], phi:[0.4386]] t^2.39 + t^2.54 + t^2.63 + t^2.88 + t^3.12 + t^3.37 + t^3.86 + t^3.95 + t^4.11 + t^4.19 + t^4.77 + t^4.84 + t^4.93 + t^5.02 + t^5.09 + t^5.18 + 2*t^5.26 + t^5.42 + 2*t^5.51 + t^5.67 + 2*t^5.75 - t^6. - t^4.32/y - t^4.32*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46135 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1\phi_1^2$ + $ \phi_1\tilde{q}_1^2$ 0.688 0.8541 0.8054 [X:[], M:[1.1058, 0.7867, 0.6825, 1.0016], q:[0.4368, 0.4574], qb:[0.7765, 0.5411], phi:[0.4471]] t^2.05 + t^2.36 + t^2.68 + t^2.93 + t^3. + t^3.32 + t^3.7 + t^3.96 + t^4.02 + 2*t^4.09 + t^4.27 + t^4.34 + t^4.41 + t^4.59 + t^4.72 + t^4.73 + t^4.98 + t^5.04 + t^5.05 + t^5.29 + 3*t^5.36 + t^5.62 + t^5.68 + t^5.87 - 2*t^6. - t^4.34/y - t^4.34*y detail