Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1812 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ 0.7088 0.8952 0.7917 [M:[0.6835, 1.1055, 1.0045, 0.6745, 0.7845], q:[0.7764, 0.5401], qb:[0.4554, 0.4391], phi:[0.4473]] [M:[[12, 12], [-4, -4], [7, 11], [-2, -10], [1, -3]], q:[[-1, -1], [-11, -11]], qb:[[4, 0], [0, 4]], phi:[[2, 2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{1}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{4}M_{5}$, ${ }M_{1}M_{5}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{5}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{5}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{5}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ ${}$ -2 t^2.024 + t^2.051 + t^2.354 + t^2.684 + t^2.938 + t^3.014 + t^3.316 + t^3.695 + t^4.025 + t^4.047 + 2*t^4.074 + t^4.101 + t^4.279 + t^4.328 + t^4.377 + t^4.404 + t^4.582 + 2*t^4.707 + t^4.734 + t^4.961 + t^4.988 + 2*t^5.037 + t^5.064 + t^5.291 + t^5.34 + 3*t^5.367 + t^5.621 + t^5.67 + t^5.719 + t^5.875 - 2*t^6. + t^6.027 + t^6.049 + t^6.071 + t^6.076 + 2*t^6.098 + 2*t^6.125 + t^6.152 + t^6.33 + t^6.352 + 2*t^6.379 + t^6.401 + 2*t^6.428 + t^6.455 + t^6.606 + 2*t^6.633 + t^6.682 + t^6.709 + 2*t^6.731 + 3*t^6.758 + t^6.785 + t^6.936 + t^6.985 + 2*t^7.012 + t^7.039 + 3*t^7.061 + 2*t^7.088 + t^7.115 + t^7.217 + t^7.266 - t^7.293 + t^7.315 + t^7.364 + 4*t^7.391 + 3*t^7.418 + t^7.52 + t^7.645 + t^7.694 + 3*t^7.721 + t^7.743 + t^7.77 + t^7.899 - t^8.024 + t^8.073 + t^8.078 + t^8.094 + t^8.1 + 2*t^8.121 + t^8.127 + 3*t^8.148 + 2*t^8.175 + t^8.202 - 2*t^8.354 + t^8.375 + 2*t^8.381 + 3*t^8.402 + t^8.424 + t^8.429 + 2*t^8.451 + 2*t^8.478 + t^8.505 + t^8.559 + t^8.63 - t^8.635 + 2*t^8.657 - t^8.684 + t^8.705 + 2*t^8.732 + 2*t^8.754 + t^8.759 + 4*t^8.781 + 3*t^8.808 + t^8.813 + t^8.835 + t^8.862 + t^8.911 - 3*t^8.938 + t^8.959 - t^4.342/y - t^6.365/y - t^6.392/y - t^6.695/y + t^7.074/y + t^7.328/y - t^7.355/y + t^7.377/y + t^7.404/y + t^7.707/y + t^7.734/y + t^7.961/y + (2*t^7.988)/y + (2*t^8.037)/y + t^8.064/y + (2*t^8.291)/y + t^8.318/y + t^8.34/y + (2*t^8.367)/y - t^8.389/y - t^8.416/y - t^8.443/y + t^8.621/y + t^8.67/y + t^8.697/y + t^8.951/y - t^4.342*y - t^6.365*y - t^6.392*y - t^6.695*y + t^7.074*y + t^7.328*y - t^7.355*y + t^7.377*y + t^7.404*y + t^7.707*y + t^7.734*y + t^7.961*y + 2*t^7.988*y + 2*t^8.037*y + t^8.064*y + 2*t^8.291*y + t^8.318*y + t^8.34*y + 2*t^8.367*y - t^8.389*y - t^8.416*y - t^8.443*y + t^8.621*y + t^8.67*y + t^8.697*y + t^8.951*y t^2.024/(g1^2*g2^10) + g1^12*g2^12*t^2.051 + (g1*t^2.354)/g2^3 + g1^4*g2^4*t^2.684 + t^2.938/(g1^11*g2^7) + g1^7*g2^11*t^3.014 + t^3.316/(g1^4*g2^4) + (g1^3*t^3.695)/g2 + g1^6*g2^6*t^4.025 + t^4.047/(g1^4*g2^20) + 2*g1^10*g2^2*t^4.074 + g1^24*g2^24*t^4.101 + t^4.279/(g1^9*g2^5) + t^4.328/(g1^5*g2^9) + t^4.377/(g1*g2^13) + g1^13*g2^9*t^4.404 + t^4.582/(g1^20*g2^20) + (2*g1^2*t^4.707)/g2^6 + g1^16*g2^16*t^4.734 + t^4.961/(g1^13*g2^17) + g1*g2^5*t^4.988 + 2*g1^5*g2*t^5.037 + g1^19*g2^23*t^5.064 + t^5.291/(g1^10*g2^10) + t^5.34/(g1^6*g2^14) + 3*g1^8*g2^8*t^5.367 + t^5.621/(g1^7*g2^3) + t^5.67/(g1^3*g2^7) + (g1*t^5.719)/g2^11 + t^5.875/(g1^22*g2^14) - 2*t^6. + g1^14*g2^22*t^6.027 + (g1^4*t^6.049)/g2^4 + t^6.071/(g1^6*g2^30) + g1^18*g2^18*t^6.076 + (2*g1^8*t^6.098)/g2^8 + 2*g1^22*g2^14*t^6.125 + g1^36*g2^36*t^6.152 + g1^3*g2^7*t^6.33 + t^6.352/(g1^7*g2^19) + 2*g1^7*g2^3*t^6.379 + t^6.401/(g1^3*g2^23) + (2*g1^11*t^6.428)/g2 + g1^25*g2^21*t^6.455 + t^6.606/(g1^22*g2^30) + (2*t^6.633)/(g1^8*g2^8) + t^6.682/(g1^4*g2^12) + g1^10*g2^10*t^6.709 + (2*t^6.731)/g2^16 + 3*g1^14*g2^6*t^6.758 + g1^28*g2^28*t^6.785 + t^6.936/(g1^19*g2^23) + t^6.985/(g1^15*g2^27) + (2*t^7.012)/(g1*g2^5) + g1^13*g2^17*t^7.039 + (3*g1^3*t^7.061)/g2^9 + 2*g1^17*g2^13*t^7.088 + g1^31*g2^35*t^7.115 + t^7.217/(g1^20*g2^12) + t^7.266/(g1^16*g2^16) - (g2^6*t^7.293)/g1^2 + t^7.315/(g1^12*g2^20) + t^7.364/(g1^8*g2^24) + (4*g1^6*t^7.391)/g2^2 + 3*g1^20*g2^20*t^7.418 + t^7.52/(g1^31*g2^27) + t^7.645/(g1^9*g2^13) + t^7.694/(g1^5*g2^17) + 3*g1^9*g2^5*t^7.721 + t^7.743/(g1*g2^21) + g1^13*g2*t^7.77 + t^7.899/(g1^24*g2^24) - t^8.024/(g1^2*g2^10) + (g1^2*t^8.073)/g2^14 + g1^26*g2^34*t^8.078 + t^8.094/(g1^8*g2^40) + g1^16*g2^8*t^8.1 + (2*g1^6*t^8.121)/g2^18 + g1^30*g2^30*t^8.127 + 3*g1^20*g2^4*t^8.148 + 2*g1^34*g2^26*t^8.175 + g1^48*g2^48*t^8.202 - (2*g1*t^8.354)/g2^3 + t^8.375/(g1^9*g2^29) + 2*g1^15*g2^19*t^8.381 + (3*g1^5*t^8.402)/g2^7 + t^8.424/(g1^5*g2^33) + g1^19*g2^15*t^8.429 + (2*g1^9*t^8.451)/g2^11 + 2*g1^23*g2^11*t^8.478 + g1^37*g2^33*t^8.505 + t^8.559/(g1^18*g2^10) + t^8.63/(g1^24*g2^40) - g2^8*t^8.635 + (2*t^8.657)/(g1^10*g2^18) - g1^4*g2^4*t^8.684 + t^8.705/(g1^6*g2^22) + 2*g1^8*t^8.732 + (2*t^8.754)/(g1^2*g2^26) + g1^22*g2^22*t^8.759 + (4*g1^12*t^8.781)/g2^4 + 3*g1^26*g2^18*t^8.808 + t^8.813/(g1^33*g2^21) + g1^40*g2^40*t^8.835 + t^8.862/(g1^29*g2^25) + t^8.911/(g1^25*g2^29) - (3*t^8.938)/(g1^11*g2^7) + t^8.959/(g1^21*g2^33) - (g1^2*g2^2*t^4.342)/y - t^6.365/(g2^8*y) - (g1^14*g2^14*t^6.392)/y - (g1^3*t^6.695)/(g2*y) + (g1^10*g2^2*t^7.074)/y + t^7.328/(g1^5*g2^9*y) - (g1^9*g2^13*t^7.355)/y + t^7.377/(g1*g2^13*y) + (g1^13*g2^9*t^7.404)/y + (g1^2*t^7.707)/(g2^6*y) + (g1^16*g2^16*t^7.734)/y + t^7.961/(g1^13*g2^17*y) + (2*g1*g2^5*t^7.988)/y + (2*g1^5*g2*t^8.037)/y + (g1^19*g2^23*t^8.064)/y + (2*t^8.291)/(g1^10*g2^10*y) + (g1^4*g2^12*t^8.318)/y + t^8.34/(g1^6*g2^14*y) + (2*g1^8*g2^8*t^8.367)/y - t^8.389/(g1^2*g2^18*y) - (g1^12*g2^4*t^8.416)/y - (g1^26*g2^26*t^8.443)/y + t^8.621/(g1^7*g2^3*y) + t^8.67/(g1^3*g2^7*y) + (g1^11*g2^15*t^8.697)/y + (g2^4*t^8.951)/(g1^4*y) - g1^2*g2^2*t^4.342*y - (t^6.365*y)/g2^8 - g1^14*g2^14*t^6.392*y - (g1^3*t^6.695*y)/g2 + g1^10*g2^2*t^7.074*y + (t^7.328*y)/(g1^5*g2^9) - g1^9*g2^13*t^7.355*y + (t^7.377*y)/(g1*g2^13) + g1^13*g2^9*t^7.404*y + (g1^2*t^7.707*y)/g2^6 + g1^16*g2^16*t^7.734*y + (t^7.961*y)/(g1^13*g2^17) + 2*g1*g2^5*t^7.988*y + 2*g1^5*g2*t^8.037*y + g1^19*g2^23*t^8.064*y + (2*t^8.291*y)/(g1^10*g2^10) + g1^4*g2^12*t^8.318*y + (t^8.34*y)/(g1^6*g2^14) + 2*g1^8*g2^8*t^8.367*y - (t^8.389*y)/(g1^2*g2^18) - g1^12*g2^4*t^8.416*y - g1^26*g2^26*t^8.443*y + (t^8.621*y)/(g1^7*g2^3) + (t^8.67*y)/(g1^3*g2^7) + g1^11*g2^15*t^8.697*y + (g2^4*t^8.951*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2827 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}X_{1}$ 0.6011 0.7433 0.8087 [X:[1.3686], M:[0.6314, 1.1229, 0.7952, 1.041, 0.959], q:[0.7807, 0.5879], qb:[0.6169, 0.2602], phi:[0.4386]] t^2.386 + t^2.544 + t^2.631 + t^2.877 + t^3.123 + t^3.369 + t^3.86 + t^3.947 + t^4.106 + t^4.193 + t^4.771 + t^4.843 + t^4.93 + t^5.017 + t^5.089 + t^5.176 + 2*t^5.263 + t^5.422 + 2*t^5.509 + t^5.667 + 2*t^5.754 - t^6. - t^4.316/y - t^4.316*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
348 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ 0.6916 0.8641 0.8004 [M:[0.6838, 1.1054, 0.9954, 0.6931], q:[0.7763, 0.5398], qb:[0.4648, 0.4298], phi:[0.4473]] t^2.051 + t^2.079 + t^2.684 + t^2.909 + t^2.986 + t^3.316 + t^3.619 + t^3.723 + t^4.026 + t^4.103 + 2*t^4.131 + t^4.158 + t^4.251 + t^4.356 + t^4.581 + t^4.735 + t^4.763 + t^4.96 + t^4.988 + t^5.038 + t^5.065 + 2*t^5.368 + t^5.395 + t^5.593 + t^5.67 + t^5.698 + t^5.803 + t^5.818 + t^5.972 - 2*t^6. - t^4.342/y - t^4.342*y detail