Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46498 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}^{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ 0.6691 0.8361 0.8002 [M:[0.6932, 0.6932, 0.6855, 0.7086, 1.2991], q:[0.482, 0.8248], qb:[0.8248, 0.4666], phi:[0.3505]] [M:[[-7, 1], [-7, 1], [-10, 2], [-1, -1], [4, 0]], q:[[6, -1], [1, 0]], qb:[[1, 0], [0, 1]], phi:[[-2, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{1}$, ${ }M_{2}$, ${ }M_{4}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{3}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{4}$, ${ }M_{2}M_{4}$, ${ }M_{4}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{5}$, ${ }M_{2}M_{5}$, ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ ${}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$ -2 t^2.057 + 2*t^2.08 + t^2.126 + t^2.846 + t^3.851 + t^3.874 + 2*t^3.897 + t^4.113 + 2*t^4.136 + 3*t^4.159 + t^4.182 + 2*t^4.205 + t^4.251 + t^4.903 + 2*t^4.926 + t^4.949 + t^4.972 + t^5.692 + t^5.908 + 3*t^5.931 + 3*t^5.954 + 3*t^5.977 - 2*t^6. - t^6.046 + t^6.17 + 2*t^6.193 + 3*t^6.216 + 5*t^6.239 + 2*t^6.262 + 3*t^6.285 + t^6.308 + 2*t^6.331 + t^6.377 + t^6.697 + t^6.72 + 2*t^6.743 + t^6.959 + 2*t^6.982 + 3*t^7.005 + t^7.028 - t^7.074 + t^7.702 + t^7.726 + 3*t^7.749 + 2*t^7.772 + t^7.795 - t^7.818 - t^7.841 + t^7.965 + 3*t^7.988 + 6*t^8.011 + 4*t^8.034 + 2*t^8.057 - 5*t^8.08 - t^8.103 - 4*t^8.126 - t^8.172 + t^8.227 + 2*t^8.25 + 3*t^8.273 + 5*t^8.296 + 7*t^8.319 + 3*t^8.342 + 5*t^8.365 + 2*t^8.388 + 3*t^8.411 + t^8.434 + 2*t^8.457 + t^8.503 + t^8.538 + t^8.754 + 3*t^8.777 + 3*t^8.8 + 2*t^8.823 - 2*t^8.846 - 2*t^8.869 - 2*t^8.892 - t^4.051/y - t^6.108/y - (2*t^6.131)/y - t^6.177/y + (2*t^7.136)/y + t^7.159/y + t^7.182/y + (2*t^7.205)/y + t^7.903/y + (3*t^7.926)/y + (3*t^7.972)/y + t^7.995/y - t^8.165/y - (2*t^8.188)/y - (3*t^8.211)/y - t^8.234/y - (2*t^8.257)/y - t^8.303/y + t^8.908/y + (3*t^8.931)/y + (4*t^8.954)/y + (5*t^8.977)/y - t^4.051*y - t^6.108*y - 2*t^6.131*y - t^6.177*y + 2*t^7.136*y + t^7.159*y + t^7.182*y + 2*t^7.205*y + t^7.903*y + 3*t^7.926*y + 3*t^7.972*y + t^7.995*y - t^8.165*y - 2*t^8.188*y - 3*t^8.211*y - t^8.234*y - 2*t^8.257*y - t^8.303*y + t^8.908*y + 3*t^8.931*y + 4*t^8.954*y + 5*t^8.977*y (g2^2*t^2.057)/g1^10 + (2*g2*t^2.08)/g1^7 + t^2.126/(g1*g2) + g1^6*t^2.846 + (g2^2*t^3.851)/g1^2 + g1*g2*t^3.874 + 2*g1^4*t^3.897 + (g2^4*t^4.113)/g1^20 + (2*g2^3*t^4.136)/g1^17 + (3*g2^2*t^4.159)/g1^14 + (g2*t^4.182)/g1^11 + (2*t^4.205)/g1^8 + t^4.251/(g1^2*g2^2) + (g2^2*t^4.903)/g1^4 + (2*g2*t^4.926)/g1 + g1^2*t^4.949 + (g1^5*t^4.972)/g2 + g1^12*t^5.692 + (g2^4*t^5.908)/g1^12 + (3*g2^3*t^5.931)/g1^9 + (3*g2^2*t^5.954)/g1^6 + (3*g2*t^5.977)/g1^3 - 2*t^6. - (g1^6*t^6.046)/g2^2 + (g2^6*t^6.17)/g1^30 + (2*g2^5*t^6.193)/g1^27 + (3*g2^4*t^6.216)/g1^24 + (5*g2^3*t^6.239)/g1^21 + (2*g2^2*t^6.262)/g1^18 + (3*g2*t^6.285)/g1^15 + t^6.308/g1^12 + (2*t^6.331)/(g1^9*g2) + t^6.377/(g1^3*g2^3) + g1^4*g2^2*t^6.697 + g1^7*g2*t^6.72 + 2*g1^10*t^6.743 + (g2^4*t^6.959)/g1^14 + (2*g2^3*t^6.982)/g1^11 + (3*g2^2*t^7.005)/g1^8 + (g2*t^7.028)/g1^5 - (g1*t^7.074)/g2 + (g2^4*t^7.702)/g1^4 + (g2^3*t^7.726)/g1 + 3*g1^2*g2^2*t^7.749 + 2*g1^5*g2*t^7.772 + g1^8*t^7.795 - (g1^11*t^7.818)/g2 - (g1^14*t^7.841)/g2^2 + (g2^6*t^7.965)/g1^22 + (3*g2^5*t^7.988)/g1^19 + (6*g2^4*t^8.011)/g1^16 + (4*g2^3*t^8.034)/g1^13 + (2*g2^2*t^8.057)/g1^10 - (5*g2*t^8.08)/g1^7 - t^8.103/g1^4 - (4*t^8.126)/(g1*g2) - (g1^5*t^8.172)/g2^3 + (g2^8*t^8.227)/g1^40 + (2*g2^7*t^8.25)/g1^37 + (3*g2^6*t^8.273)/g1^34 + (5*g2^5*t^8.296)/g1^31 + (7*g2^4*t^8.319)/g1^28 + (3*g2^3*t^8.342)/g1^25 + (5*g2^2*t^8.365)/g1^22 + (2*g2*t^8.388)/g1^19 + (3*t^8.411)/g1^16 + t^8.434/(g1^13*g2) + (2*t^8.457)/(g1^10*g2^2) + t^8.503/(g1^4*g2^4) + g1^18*t^8.538 + (g2^4*t^8.754)/g1^6 + (3*g2^3*t^8.777)/g1^3 + 3*g2^2*t^8.8 + 2*g1^3*g2*t^8.823 - 2*g1^6*t^8.846 - (2*g1^9*t^8.869)/g2 - (2*g1^12*t^8.892)/g2^2 - t^4.051/(g1^2*y) - (g2^2*t^6.108)/(g1^12*y) - (2*g2*t^6.131)/(g1^9*y) - t^6.177/(g1^3*g2*y) + (2*g2^3*t^7.136)/(g1^17*y) + (g2^2*t^7.159)/(g1^14*y) + (g2*t^7.182)/(g1^11*y) + (2*t^7.205)/(g1^8*y) + (g2^2*t^7.903)/(g1^4*y) + (3*g2*t^7.926)/(g1*y) + (3*g1^5*t^7.972)/(g2*y) + (g1^8*t^7.995)/(g2^2*y) - (g2^4*t^8.165)/(g1^22*y) - (2*g2^3*t^8.188)/(g1^19*y) - (3*g2^2*t^8.211)/(g1^16*y) - (g2*t^8.234)/(g1^13*y) - (2*t^8.257)/(g1^10*y) - t^8.303/(g1^4*g2^2*y) + (g2^4*t^8.908)/(g1^12*y) + (3*g2^3*t^8.931)/(g1^9*y) + (4*g2^2*t^8.954)/(g1^6*y) + (5*g2*t^8.977)/(g1^3*y) - (t^4.051*y)/g1^2 - (g2^2*t^6.108*y)/g1^12 - (2*g2*t^6.131*y)/g1^9 - (t^6.177*y)/(g1^3*g2) + (2*g2^3*t^7.136*y)/g1^17 + (g2^2*t^7.159*y)/g1^14 + (g2*t^7.182*y)/g1^11 + (2*t^7.205*y)/g1^8 + (g2^2*t^7.903*y)/g1^4 + (3*g2*t^7.926*y)/g1 + (3*g1^5*t^7.972*y)/g2 + (g1^8*t^7.995*y)/g2^2 - (g2^4*t^8.165*y)/g1^22 - (2*g2^3*t^8.188*y)/g1^19 - (3*g2^2*t^8.211*y)/g1^16 - (g2*t^8.234*y)/g1^13 - (2*t^8.257*y)/g1^10 - (t^8.303*y)/(g1^4*g2^2) + (g2^4*t^8.908*y)/g1^12 + (3*g2^3*t^8.931*y)/g1^9 + (4*g2^2*t^8.954*y)/g1^6 + (5*g2*t^8.977*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46141 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}^{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$ 0.6896 0.8756 0.7876 [M:[0.6901, 0.6901, 0.6833, 0.7038], q:[0.4841, 0.8258], qb:[0.8258, 0.4705], phi:[0.3485]] t^2.05 + 2*t^2.07 + t^2.091 + t^2.111 + t^2.864 + t^3.868 + t^3.889 + t^3.909 + t^4.1 + 2*t^4.12 + 4*t^4.141 + 3*t^4.161 + 3*t^4.182 + t^4.202 + t^4.223 + t^4.914 + 2*t^4.934 + 2*t^4.955 + t^4.975 + t^5.728 + t^5.918 + 3*t^5.939 + 3*t^5.959 + 2*t^5.98 - t^6. - t^4.045/y - t^4.045*y detail