Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1993 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{3}M_{6}$ + ${ }M_{4}M_{6}$ + ${ }M_{7}q_{1}\tilde{q}_{2}$ 0.6691 0.8361 0.8002 [M:[0.6855, 1.2991, 0.7086, 0.7086, 0.6932, 1.2914, 0.6932], q:[0.8363, 0.8133], qb:[0.4782, 0.4705], phi:[0.3505]] [M:[[-8, 4], [2, 2], [1, -5], [1, -5], [-5, 1], [-1, 5], [-5, 1]], q:[[5, -4], [-4, 5]], qb:[[3, 0], [0, 3]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{5}$, ${ }M_{7}$, ${ }M_{4}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{6}$, ${ }M_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{1}M_{7}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{4}M_{5}$, ${ }M_{4}M_{7}$, ${ }M_{4}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{7}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{6}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{7}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{5}$, ${ }M_{2}M_{7}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{7}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ ${}$ -2 t^2.057 + 2*t^2.08 + t^2.126 + t^2.846 + t^3.851 + t^3.874 + 2*t^3.897 + t^4.113 + 2*t^4.136 + 3*t^4.159 + t^4.182 + 2*t^4.205 + t^4.251 + t^4.903 + 2*t^4.926 + t^4.949 + t^4.972 + t^5.692 + t^5.908 + 3*t^5.931 + 3*t^5.954 + 3*t^5.977 - 2*t^6. - t^6.046 + t^6.17 + 2*t^6.193 + 3*t^6.216 + 5*t^6.239 + 2*t^6.262 + 3*t^6.285 + t^6.308 + 2*t^6.331 + t^6.377 + t^6.697 + t^6.72 + 2*t^6.743 + t^6.959 + 2*t^6.982 + 3*t^7.005 + t^7.028 - t^7.074 + t^7.702 + t^7.726 + 3*t^7.749 + 2*t^7.772 + t^7.795 - t^7.818 - t^7.841 + t^7.965 + 3*t^7.988 + 6*t^8.011 + 4*t^8.034 + 2*t^8.057 - 5*t^8.08 - t^8.103 - 4*t^8.126 - t^8.172 + t^8.227 + 2*t^8.25 + 3*t^8.273 + 5*t^8.296 + 7*t^8.319 + 3*t^8.342 + 5*t^8.365 + 2*t^8.388 + 3*t^8.411 + t^8.434 + 2*t^8.457 + t^8.503 + t^8.538 + t^8.754 + 3*t^8.777 + 3*t^8.8 + 2*t^8.823 - 2*t^8.846 - 2*t^8.869 - 2*t^8.892 - t^4.051/y - t^6.108/y - (2*t^6.131)/y - t^6.177/y + (2*t^7.136)/y + t^7.159/y + t^7.182/y + (2*t^7.205)/y + t^7.903/y + (3*t^7.926)/y + (3*t^7.972)/y + t^7.995/y - t^8.165/y - (2*t^8.188)/y - (3*t^8.211)/y - t^8.234/y - (2*t^8.257)/y - t^8.303/y + t^8.908/y + (3*t^8.931)/y + (4*t^8.954)/y + (5*t^8.977)/y - t^4.051*y - t^6.108*y - 2*t^6.131*y - t^6.177*y + 2*t^7.136*y + t^7.159*y + t^7.182*y + 2*t^7.205*y + t^7.903*y + 3*t^7.926*y + 3*t^7.972*y + t^7.995*y - t^8.165*y - 2*t^8.188*y - 3*t^8.211*y - t^8.234*y - 2*t^8.257*y - t^8.303*y + t^8.908*y + 3*t^8.931*y + 4*t^8.954*y + 5*t^8.977*y (g2^4*t^2.057)/g1^8 + (2*g2*t^2.08)/g1^5 + (g1*t^2.126)/g2^5 + g1^3*g2^3*t^2.846 + (g2^8*t^3.851)/g1^4 + (g2^5*t^3.874)/g1 + 2*g1^2*g2^2*t^3.897 + (g2^8*t^4.113)/g1^16 + (2*g2^5*t^4.136)/g1^13 + (3*g2^2*t^4.159)/g1^10 + t^4.182/(g1^7*g2) + (2*t^4.205)/(g1^4*g2^4) + (g1^2*t^4.251)/g2^10 + (g2^7*t^4.903)/g1^5 + (2*g2^4*t^4.926)/g1^2 + g1*g2*t^4.949 + (g1^4*t^4.972)/g2^2 + g1^6*g2^6*t^5.692 + (g2^12*t^5.908)/g1^12 + (3*g2^9*t^5.931)/g1^9 + (3*g2^6*t^5.954)/g1^6 + (3*g2^3*t^5.977)/g1^3 - 2*t^6. - (g1^6*t^6.046)/g2^6 + (g2^12*t^6.17)/g1^24 + (2*g2^9*t^6.193)/g1^21 + (3*g2^6*t^6.216)/g1^18 + (5*g2^3*t^6.239)/g1^15 + (2*t^6.262)/g1^12 + (3*t^6.285)/(g1^9*g2^3) + t^6.308/(g1^6*g2^6) + (2*t^6.331)/(g1^3*g2^9) + (g1^3*t^6.377)/g2^15 + (g2^11*t^6.697)/g1 + g1^2*g2^8*t^6.72 + 2*g1^5*g2^5*t^6.743 + (g2^11*t^6.959)/g1^13 + (2*g2^8*t^6.982)/g1^10 + (3*g2^5*t^7.005)/g1^7 + (g2^2*t^7.028)/g1^4 - (g1^2*t^7.074)/g2^4 + (g2^16*t^7.702)/g1^8 + (g2^13*t^7.726)/g1^5 + (3*g2^10*t^7.749)/g1^2 + 2*g1*g2^7*t^7.772 + g1^4*g2^4*t^7.795 - g1^7*g2*t^7.818 - (g1^10*t^7.841)/g2^2 + (g2^16*t^7.965)/g1^20 + (3*g2^13*t^7.988)/g1^17 + (6*g2^10*t^8.011)/g1^14 + (4*g2^7*t^8.034)/g1^11 + (2*g2^4*t^8.057)/g1^8 - (5*g2*t^8.08)/g1^5 - t^8.103/(g1^2*g2^2) - (4*g1*t^8.126)/g2^5 - (g1^7*t^8.172)/g2^11 + (g2^16*t^8.227)/g1^32 + (2*g2^13*t^8.25)/g1^29 + (3*g2^10*t^8.273)/g1^26 + (5*g2^7*t^8.296)/g1^23 + (7*g2^4*t^8.319)/g1^20 + (3*g2*t^8.342)/g1^17 + (5*t^8.365)/(g1^14*g2^2) + (2*t^8.388)/(g1^11*g2^5) + (3*t^8.411)/(g1^8*g2^8) + t^8.434/(g1^5*g2^11) + (2*t^8.457)/(g1^2*g2^14) + (g1^4*t^8.503)/g2^20 + g1^9*g2^9*t^8.538 + (g2^15*t^8.754)/g1^9 + (3*g2^12*t^8.777)/g1^6 + (3*g2^9*t^8.8)/g1^3 + 2*g2^6*t^8.823 - 2*g1^3*g2^3*t^8.846 - 2*g1^6*t^8.869 - (2*g1^9*t^8.892)/g2^3 - t^4.051/(g1*g2*y) - (g2^3*t^6.108)/(g1^9*y) - (2*t^6.131)/(g1^6*y) - t^6.177/(g2^6*y) + (2*g2^5*t^7.136)/(g1^13*y) + (g2^2*t^7.159)/(g1^10*y) + t^7.182/(g1^7*g2*y) + (2*t^7.205)/(g1^4*g2^4*y) + (g2^7*t^7.903)/(g1^5*y) + (3*g2^4*t^7.926)/(g1^2*y) + (3*g1^4*t^7.972)/(g2^2*y) + (g1^7*t^7.995)/(g2^5*y) - (g2^7*t^8.165)/(g1^17*y) - (2*g2^4*t^8.188)/(g1^14*y) - (3*g2*t^8.211)/(g1^11*y) - t^8.234/(g1^8*g2^2*y) - (2*t^8.257)/(g1^5*g2^5*y) - (g1*t^8.303)/(g2^11*y) + (g2^12*t^8.908)/(g1^12*y) + (3*g2^9*t^8.931)/(g1^9*y) + (4*g2^6*t^8.954)/(g1^6*y) + (5*g2^3*t^8.977)/(g1^3*y) - (t^4.051*y)/(g1*g2) - (g2^3*t^6.108*y)/g1^9 - (2*t^6.131*y)/g1^6 - (t^6.177*y)/g2^6 + (2*g2^5*t^7.136*y)/g1^13 + (g2^2*t^7.159*y)/g1^10 + (t^7.182*y)/(g1^7*g2) + (2*t^7.205*y)/(g1^4*g2^4) + (g2^7*t^7.903*y)/g1^5 + (3*g2^4*t^7.926*y)/g1^2 + (3*g1^4*t^7.972*y)/g2^2 + (g1^7*t^7.995*y)/g2^5 - (g2^7*t^8.165*y)/g1^17 - (2*g2^4*t^8.188*y)/g1^14 - (3*g2*t^8.211*y)/g1^11 - (t^8.234*y)/(g1^8*g2^2) - (2*t^8.257*y)/(g1^5*g2^5) - (g1*t^8.303*y)/g2^11 + (g2^12*t^8.908*y)/g1^12 + (3*g2^9*t^8.931*y)/g1^9 + (4*g2^6*t^8.954*y)/g1^6 + (5*g2^3*t^8.977*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
754 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{3}M_{6}$ + ${ }M_{4}M_{6}$ 0.6485 0.7962 0.8144 [M:[0.6921, 1.2959, 0.7101, 0.7101, 0.6981, 1.2899], q:[0.833, 0.8149], qb:[0.4749, 0.4689], phi:[0.3521]] t^2.076 + t^2.094 + t^2.13 + t^2.831 + t^3.851 + t^3.87 + 2*t^3.888 + t^3.906 + t^4.152 + t^4.17 + t^4.189 + t^4.207 + t^4.225 + t^4.261 + t^4.908 + t^4.926 + t^4.944 + t^4.962 + t^5.663 + t^5.928 + 2*t^5.946 + 2*t^5.964 + 2*t^5.982 - t^6. - t^4.056/y - t^4.056*y detail