Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46465 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{5}$ | 0.6465 | 0.8492 | 0.7613 | [M:[0.979, 0.7366, 0.7786, 0.7949, 1.021], q:[0.7448, 0.2762], qb:[0.4767, 0.4603], phi:[0.5105]] | [M:[[4, 4], [-5, 7], [-13, -1], [-1, -13], [-4, -4]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{3}$, ${ }M_{4}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}^{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{5}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}M_{5}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}q_{2}^{2}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ | ${}\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ | -2 | 2*t^2.21 + t^2.259 + t^2.336 + t^2.385 + t^2.811 + 2*t^3.063 + t^3.189 + t^3.741 + t^4.294 + t^4.343 + t^4.392 + 3*t^4.419 + 2*t^4.469 + t^4.518 + 2*t^4.545 + 3*t^4.594 + t^4.643 + t^4.671 + t^4.72 + t^4.769 + 2*t^5.021 + t^5.07 + t^5.147 + t^5.196 + 4*t^5.273 + 2*t^5.322 + 3*t^5.399 + 2*t^5.448 + t^5.525 + t^5.574 + t^5.622 + t^5.874 + t^5.951 - 2*t^6. - t^6.049 + t^6.077 + 2*t^6.126 + 2*t^6.252 + t^6.378 + 2*t^6.503 + 2*t^6.552 + t^6.601 + 5*t^6.629 + t^6.65 + 3*t^6.678 + 2*t^6.727 + 3*t^6.755 + 2*t^6.776 + 5*t^6.804 + t^6.853 + 2*t^6.881 + t^6.902 + 3*t^6.93 + 2*t^6.979 + t^7.007 + t^7.028 + t^7.056 + 2*t^7.105 + 2*t^7.154 + t^7.203 + 2*t^7.231 + t^7.28 + 3*t^7.357 + 2*t^7.406 + 2*t^7.455 + 7*t^7.482 + 2*t^7.531 + 2*t^7.581 + 5*t^7.608 + 5*t^7.657 + 2*t^7.706 + 3*t^7.734 + 3*t^7.783 + 4*t^7.832 + t^7.86 + t^7.881 + t^7.909 + t^7.958 + t^8.035 - t^8.133 + t^8.161 - 5*t^8.21 - 4*t^8.259 + t^8.287 - t^8.308 + t^8.336 - 2*t^8.385 + t^8.413 + t^8.433 - t^8.434 + 4*t^8.462 + 2*t^8.511 + 4*t^8.587 + t^8.636 + 2*t^8.637 + 2*t^8.685 + 4*t^8.713 + t^8.734 + 3*t^8.762 + t^8.783 - 2*t^8.811 + 7*t^8.839 + 4*t^8.888 + t^8.909 + 5*t^8.965 + 2*t^8.986 - t^4.531/y - t^6.741/y - t^6.867/y - t^6.916/y + t^7.419/y + (3*t^7.469)/y + (2*t^7.545)/y + (2*t^7.594)/y + t^7.643/y + t^7.72/y + (2*t^8.021)/y + t^8.07/y + (2*t^8.147)/y + (2*t^8.196)/y + (4*t^8.273)/y + (3*t^8.322)/y + (4*t^8.399)/y + (3*t^8.448)/y + t^8.525/y + t^8.574/y + (2*t^8.874)/y + t^8.951/y - t^4.531*y - t^6.741*y - t^6.867*y - t^6.916*y + t^7.419*y + 3*t^7.469*y + 2*t^7.545*y + 2*t^7.594*y + t^7.643*y + t^7.72*y + 2*t^8.021*y + t^8.07*y + 2*t^8.147*y + 2*t^8.196*y + 4*t^8.273*y + 3*t^8.322*y + 4*t^8.399*y + 3*t^8.448*y + t^8.525*y + t^8.574*y + 2*t^8.874*y + t^8.951*y | (2*g2^7*t^2.21)/g1^5 + (g1^7*t^2.259)/g2^5 + t^2.336/(g1^13*g2) + t^2.385/(g1*g2^13) + g1^12*g2^12*t^2.811 + (2*t^3.063)/(g1^4*g2^4) + t^3.189/(g1^12*g2^12) + (g2^5*t^3.741)/g1^7 + (g2^22*t^4.294)/g1^2 + g1^10*g2^10*t^4.343 + (g1^22*t^4.392)/g2^2 + (3*g2^14*t^4.419)/g1^10 + 2*g1^2*g2^2*t^4.469 + (g1^14*t^4.518)/g2^10 + (2*g2^6*t^4.545)/g1^18 + (3*t^4.594)/(g1^6*g2^6) + (g1^6*t^4.643)/g2^18 + t^4.671/(g1^26*g2^2) + t^4.72/(g1^14*g2^14) + t^4.769/(g1^2*g2^26) + 2*g1^7*g2^19*t^5.021 + g1^19*g2^7*t^5.07 + (g2^11*t^5.147)/g1 + (g1^11*t^5.196)/g2 + (4*g2^3*t^5.273)/g1^9 + (2*g1^3*t^5.322)/g2^9 + (3*t^5.399)/(g1^17*g2^5) + (2*t^5.448)/(g1^5*g2^17) + t^5.525/(g1^25*g2^13) + t^5.574/(g1^13*g2^25) + g1^24*g2^24*t^5.622 + g1^8*g2^8*t^5.874 + (g2^12*t^5.951)/g1^12 - 2*t^6. - (g1^12*t^6.049)/g2^12 + (g2^4*t^6.077)/g1^20 + (2*t^6.126)/(g1^8*g2^8) + (2*t^6.252)/(g1^16*g2^16) + t^6.378/(g1^24*g2^24) + (2*g2^29*t^6.503)/g1^7 + 2*g1^5*g2^17*t^6.552 + g1^17*g2^5*t^6.601 + (5*g2^21*t^6.629)/g1^15 + (g1^29*t^6.65)/g2^7 + (3*g2^9*t^6.678)/g1^3 + (2*g1^9*t^6.727)/g2^3 + (3*g2^13*t^6.755)/g1^23 + (2*g1^21*t^6.776)/g2^15 + (5*g2*t^6.804)/g1^11 + (g1*t^6.853)/g2^11 + (2*g2^5*t^6.881)/g1^31 + (g1^13*t^6.902)/g2^23 + (3*t^6.93)/(g1^19*g2^7) + (2*t^6.979)/(g1^7*g2^19) + t^7.007/(g1^39*g2^3) + (g1^5*t^7.028)/g2^31 + t^7.056/(g1^27*g2^15) + t^7.105/(g1^15*g2^27) + g1^10*g2^34*t^7.105 + t^7.154/(g1^3*g2^39) + g1^22*g2^22*t^7.154 + g1^34*g2^10*t^7.203 + 2*g1^2*g2^26*t^7.231 + g1^14*g2^14*t^7.28 + (3*g2^18*t^7.357)/g1^6 + 2*g1^6*g2^6*t^7.406 + (2*g1^18*t^7.455)/g2^6 + (7*g2^10*t^7.482)/g1^14 + (2*t^7.531)/(g1^2*g2^2) + (2*g1^10*t^7.581)/g2^14 + (5*g2^2*t^7.608)/g1^22 + (5*t^7.657)/(g1^10*g2^10) + (2*g1^2*t^7.706)/g2^22 + (3*t^7.734)/(g1^30*g2^6) + (3*t^7.783)/(g1^18*g2^18) + (2*t^7.832)/(g1^6*g2^30) + 2*g1^19*g2^31*t^7.832 + t^7.86/(g1^38*g2^14) + g1^31*g2^19*t^7.881 + t^7.909/(g1^26*g2^26) + t^7.958/(g1^14*g2^38) + (g2^27*t^8.035)/g1^9 - g1^15*g2^3*t^8.133 + (g2^19*t^8.161)/g1^17 - (5*g2^7*t^8.21)/g1^5 - (4*g1^7*t^8.259)/g2^5 + (g2^11*t^8.287)/g1^25 - (g1^19*t^8.308)/g2^17 + t^8.336/(g1^13*g2) - (2*t^8.385)/(g1*g2^13) + (g2^3*t^8.413)/g1^33 + g1^36*g2^36*t^8.433 - (g1^11*t^8.434)/g2^25 + (4*t^8.462)/(g1^21*g2^9) + (2*t^8.511)/(g1^9*g2^21) + (3*t^8.587)/(g1^29*g2^17) + (g2^44*t^8.587)/g1^4 + g1^8*g2^32*t^8.636 + (2*t^8.637)/(g1^17*g2^29) + 2*g1^20*g2^20*t^8.685 + t^8.713/(g1^37*g2^25) + (3*g2^36*t^8.713)/g1^12 + g1^32*g2^8*t^8.734 + t^8.762/(g1^25*g2^37) + 2*g2^24*t^8.762 + (g1^44*t^8.783)/g2^4 - 2*g1^12*g2^12*t^8.811 + (7*g2^28*t^8.839)/g1^20 + (4*g2^16*t^8.888)/g1^8 + (g1^36*t^8.909)/g2^12 + (5*g2^20*t^8.965)/g1^28 + (2*g1^16*t^8.986)/g2^8 - t^4.531/(g1^2*g2^2*y) - (g2^5*t^6.741)/(g1^7*y) - t^6.867/(g1^15*g2^3*y) - t^6.916/(g1^3*g2^15*y) + (g2^14*t^7.419)/(g1^10*y) + (3*g1^2*g2^2*t^7.469)/y + (2*g2^6*t^7.545)/(g1^18*y) + (2*t^7.594)/(g1^6*g2^6*y) + (g1^6*t^7.643)/(g2^18*y) + t^7.72/(g1^14*g2^14*y) + (2*g1^7*g2^19*t^8.021)/y + (g1^19*g2^7*t^8.07)/y + (2*g2^11*t^8.147)/(g1*y) + (2*g1^11*t^8.196)/(g2*y) + (4*g2^3*t^8.273)/(g1^9*y) + (3*g1^3*t^8.322)/(g2^9*y) + (4*t^8.399)/(g1^17*g2^5*y) + (3*t^8.448)/(g1^5*g2^17*y) + t^8.525/(g1^25*g2^13*y) + t^8.574/(g1^13*g2^25*y) + (2*g1^8*g2^8*t^8.874)/y + (g2^12*t^8.951)/(g1^12*y) - (t^4.531*y)/(g1^2*g2^2) - (g2^5*t^6.741*y)/g1^7 - (t^6.867*y)/(g1^15*g2^3) - (t^6.916*y)/(g1^3*g2^15) + (g2^14*t^7.419*y)/g1^10 + 3*g1^2*g2^2*t^7.469*y + (2*g2^6*t^7.545*y)/g1^18 + (2*t^7.594*y)/(g1^6*g2^6) + (g1^6*t^7.643*y)/g2^18 + (t^7.72*y)/(g1^14*g2^14) + 2*g1^7*g2^19*t^8.021*y + g1^19*g2^7*t^8.07*y + (2*g2^11*t^8.147*y)/g1 + (2*g1^11*t^8.196*y)/g2 + (4*g2^3*t^8.273*y)/g1^9 + (3*g1^3*t^8.322*y)/g2^9 + (4*t^8.399*y)/(g1^17*g2^5) + (3*t^8.448*y)/(g1^5*g2^17) + (t^8.525*y)/(g1^25*g2^13) + (t^8.574*y)/(g1^13*g2^25) + 2*g1^8*g2^8*t^8.874*y + (g2^12*t^8.951*y)/g1^12 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46223 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ | 0.6488 | 0.8528 | 0.7607 | [M:[0.9727, 0.7352, 0.7898, 0.8057], q:[0.7432, 0.2841], qb:[0.4671, 0.4511], phi:[0.5136]] | 2*t^2.206 + t^2.253 + t^2.369 + t^2.417 + t^2.754 + t^2.918 + t^3.082 + t^3.246 + t^3.747 + t^4.247 + t^4.295 + t^4.343 + 3*t^4.411 + 2*t^4.459 + t^4.507 + 2*t^4.575 + 3*t^4.623 + t^4.671 + t^4.739 + t^4.786 + t^4.834 + 2*t^4.96 + t^5.008 + 3*t^5.124 + 2*t^5.172 + 3*t^5.287 + 2*t^5.335 + 2*t^5.451 + t^5.499 + t^5.509 + t^5.615 + t^5.663 + t^5.673 + t^5.836 + t^5.952 - t^6. - t^4.541/y - t^4.541*y | detail |