Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46223 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ 0.6488 0.8528 0.7607 [M:[0.9727, 0.7352, 0.7898, 0.8057], q:[0.7432, 0.2841], qb:[0.4671, 0.4511], phi:[0.5136]] [M:[[4, 4], [-5, 7], [-13, -1], [-1, -13]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{3}$, ${ }M_{4}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}^{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}q_{2}^{2}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ ${}\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ -1 2*t^2.206 + t^2.253 + t^2.369 + t^2.417 + t^2.754 + t^2.918 + t^3.082 + t^3.246 + t^3.747 + t^4.247 + t^4.295 + t^4.343 + 3*t^4.411 + 2*t^4.459 + t^4.507 + 2*t^4.575 + 3*t^4.623 + t^4.671 + t^4.739 + t^4.786 + t^4.834 + 2*t^4.96 + t^5.008 + 3*t^5.124 + 2*t^5.172 + 3*t^5.287 + 2*t^5.335 + 2*t^5.451 + t^5.499 + t^5.509 + t^5.615 + t^5.663 + t^5.673 + t^5.836 + t^5.952 - t^6. - t^6.048 + t^6.116 + t^6.164 + t^6.327 + 2*t^6.453 + t^6.491 + 2*t^6.501 + t^6.549 + t^6.597 + 5*t^6.617 + 4*t^6.665 + 2*t^6.713 + 2*t^6.76 + 3*t^6.78 + 4*t^6.828 + t^6.876 + t^6.924 + 2*t^6.944 + 3*t^6.992 + t^7.002 + 2*t^7.04 + t^7.05 + t^7.088 + t^7.098 + t^7.108 + t^7.156 + 3*t^7.166 + t^7.204 + 2*t^7.214 + t^7.252 + t^7.261 + 5*t^7.329 + 3*t^7.377 + 2*t^7.425 + 6*t^7.493 + 3*t^7.541 + 2*t^7.589 + 4*t^7.657 + 3*t^7.705 + 2*t^7.714 + 2*t^7.753 + t^7.762 + 2*t^7.82 + 2*t^7.868 + 2*t^7.878 + t^7.916 + t^7.926 + t^7.984 + t^7.994 + t^8.032 + t^8.042 + t^8.08 + t^8.158 - 3*t^8.206 - 3*t^8.253 + t^8.263 - t^8.301 + t^8.321 - t^8.369 - 3*t^8.417 + t^8.427 - t^8.465 + t^8.485 + t^8.495 + 2*t^8.533 + t^8.543 + t^8.581 + 2*t^8.591 + t^8.639 + 3*t^8.659 + t^8.686 + 2*t^8.697 + 2*t^8.707 + t^8.745 - t^8.754 + 7*t^8.822 + t^8.85 + t^8.86 + 5*t^8.87 + t^8.908 - 2*t^8.918 + t^8.966 + 5*t^8.986 - t^4.541/y - t^6.747/y - t^6.91/y - t^6.958/y + t^7.411/y + (2*t^7.459)/y + (2*t^7.575)/y + (3*t^7.623)/y + t^7.671/y + t^7.786/y + (2*t^7.96)/y + t^8.008/y + (4*t^8.124)/y + (3*t^8.172)/y + (3*t^8.287)/y + (3*t^8.335)/y + (3*t^8.451)/y + (2*t^8.499)/y + t^8.615/y + t^8.663/y + t^8.673/y + t^8.836/y + t^8.952/y - t^4.541*y - t^6.747*y - t^6.91*y - t^6.958*y + t^7.411*y + 2*t^7.459*y + 2*t^7.575*y + 3*t^7.623*y + t^7.671*y + t^7.786*y + 2*t^7.96*y + t^8.008*y + 4*t^8.124*y + 3*t^8.172*y + 3*t^8.287*y + 3*t^8.335*y + 3*t^8.451*y + 2*t^8.499*y + t^8.615*y + t^8.663*y + t^8.673*y + t^8.836*y + t^8.952*y (2*g2^7*t^2.206)/g1^5 + (g1^7*t^2.253)/g2^5 + t^2.369/(g1^13*g2) + t^2.417/(g1*g2^13) + g1^12*g2^12*t^2.754 + g1^4*g2^4*t^2.918 + t^3.082/(g1^4*g2^4) + t^3.246/(g1^12*g2^12) + (g2^5*t^3.747)/g1^7 + (g2^22*t^4.247)/g1^2 + g1^10*g2^10*t^4.295 + (g1^22*t^4.343)/g2^2 + (3*g2^14*t^4.411)/g1^10 + 2*g1^2*g2^2*t^4.459 + (g1^14*t^4.507)/g2^10 + (2*g2^6*t^4.575)/g1^18 + (3*t^4.623)/(g1^6*g2^6) + (g1^6*t^4.671)/g2^18 + t^4.739/(g1^26*g2^2) + t^4.786/(g1^14*g2^14) + t^4.834/(g1^2*g2^26) + 2*g1^7*g2^19*t^4.96 + g1^19*g2^7*t^5.008 + (3*g2^11*t^5.124)/g1 + (2*g1^11*t^5.172)/g2 + (3*g2^3*t^5.287)/g1^9 + (2*g1^3*t^5.335)/g2^9 + (2*t^5.451)/(g1^17*g2^5) + t^5.499/(g1^5*g2^17) + g1^24*g2^24*t^5.509 + t^5.615/(g1^25*g2^13) + t^5.663/(g1^13*g2^25) + g1^16*g2^16*t^5.673 + g1^8*g2^8*t^5.836 + (g2^12*t^5.952)/g1^12 - t^6. - (g1^12*t^6.048)/g2^12 + (g2^4*t^6.116)/g1^20 + t^6.164/(g1^8*g2^8) + t^6.327/(g1^16*g2^16) + (2*g2^29*t^6.453)/g1^7 + t^6.491/(g1^24*g2^24) + 2*g1^5*g2^17*t^6.501 + g1^17*g2^5*t^6.549 + (g1^29*t^6.597)/g2^7 + (5*g2^21*t^6.617)/g1^15 + (4*g2^9*t^6.665)/g1^3 + (2*g1^9*t^6.713)/g2^3 + (2*g1^21*t^6.76)/g2^15 + (3*g2^13*t^6.78)/g1^23 + (4*g2*t^6.828)/g1^11 + (g1*t^6.876)/g2^11 + (g1^13*t^6.924)/g2^23 + (2*g2^5*t^6.944)/g1^31 + (3*t^6.992)/(g1^19*g2^7) + g1^10*g2^34*t^7.002 + (2*t^7.04)/(g1^7*g2^19) + g1^22*g2^22*t^7.05 + (g1^5*t^7.088)/g2^31 + g1^34*g2^10*t^7.098 + t^7.108/(g1^39*g2^3) + t^7.156/(g1^27*g2^15) + 3*g1^2*g2^26*t^7.166 + t^7.204/(g1^15*g2^27) + 2*g1^14*g2^14*t^7.214 + t^7.252/(g1^3*g2^39) + g1^26*g2^2*t^7.261 + (5*g2^18*t^7.329)/g1^6 + 3*g1^6*g2^6*t^7.377 + (2*g1^18*t^7.425)/g2^6 + (6*g2^10*t^7.493)/g1^14 + (3*t^7.541)/(g1^2*g2^2) + (2*g1^10*t^7.589)/g2^14 + (4*g2^2*t^7.657)/g1^22 + (3*t^7.705)/(g1^10*g2^10) + 2*g1^19*g2^31*t^7.714 + (2*g1^2*t^7.753)/g2^22 + g1^31*g2^19*t^7.762 + (2*t^7.82)/(g1^30*g2^6) + (2*t^7.868)/(g1^18*g2^18) + 2*g1^11*g2^23*t^7.878 + t^7.916/(g1^6*g2^30) + g1^23*g2^11*t^7.926 + t^7.984/(g1^38*g2^14) + (g2^27*t^7.994)/g1^9 + t^8.032/(g1^26*g2^26) + g1^3*g2^15*t^8.042 + t^8.08/(g1^14*g2^38) + (g2^19*t^8.158)/g1^17 - (3*g2^7*t^8.206)/g1^5 - (3*g1^7*t^8.253)/g2^5 + g1^36*g2^36*t^8.263 - (g1^19*t^8.301)/g2^17 + (g2^11*t^8.321)/g1^25 - t^8.369/(g1^13*g2) - (3*t^8.417)/(g1*g2^13) + g1^28*g2^28*t^8.427 - (g1^11*t^8.465)/g2^25 + (g2^3*t^8.485)/g1^33 + (g2^44*t^8.495)/g1^4 + (2*t^8.533)/(g1^21*g2^9) + g1^8*g2^32*t^8.543 + t^8.581/(g1^9*g2^21) + 2*g1^20*g2^20*t^8.591 + g1^32*g2^8*t^8.639 + (3*g2^36*t^8.659)/g1^12 + (g1^44*t^8.686)/g2^4 + (2*t^8.697)/(g1^29*g2^17) + 2*g2^24*t^8.707 + t^8.745/(g1^17*g2^29) - g1^12*g2^12*t^8.754 + (7*g2^28*t^8.822)/g1^20 + (g1^36*t^8.85)/g2^12 + t^8.86/(g1^37*g2^25) + (5*g2^16*t^8.87)/g1^8 + t^8.908/(g1^25*g2^37) - 2*g1^4*g2^4*t^8.918 + (g1^16*t^8.966)/g2^8 + (5*g2^20*t^8.986)/g1^28 - t^4.541/(g1^2*g2^2*y) - (g2^5*t^6.747)/(g1^7*y) - t^6.91/(g1^15*g2^3*y) - t^6.958/(g1^3*g2^15*y) + (g2^14*t^7.411)/(g1^10*y) + (2*g1^2*g2^2*t^7.459)/y + (2*g2^6*t^7.575)/(g1^18*y) + (3*t^7.623)/(g1^6*g2^6*y) + (g1^6*t^7.671)/(g2^18*y) + t^7.786/(g1^14*g2^14*y) + (2*g1^7*g2^19*t^7.96)/y + (g1^19*g2^7*t^8.008)/y + (4*g2^11*t^8.124)/(g1*y) + (3*g1^11*t^8.172)/(g2*y) + (3*g2^3*t^8.287)/(g1^9*y) + (3*g1^3*t^8.335)/(g2^9*y) + (3*t^8.451)/(g1^17*g2^5*y) + (2*t^8.499)/(g1^5*g2^17*y) + t^8.615/(g1^25*g2^13*y) + t^8.663/(g1^13*g2^25*y) + (g1^16*g2^16*t^8.673)/y + (g1^8*g2^8*t^8.836)/y + (g2^12*t^8.952)/(g1^12*y) - (t^4.541*y)/(g1^2*g2^2) - (g2^5*t^6.747*y)/g1^7 - (t^6.91*y)/(g1^15*g2^3) - (t^6.958*y)/(g1^3*g2^15) + (g2^14*t^7.411*y)/g1^10 + 2*g1^2*g2^2*t^7.459*y + (2*g2^6*t^7.575*y)/g1^18 + (3*t^7.623*y)/(g1^6*g2^6) + (g1^6*t^7.671*y)/g2^18 + (t^7.786*y)/(g1^14*g2^14) + 2*g1^7*g2^19*t^7.96*y + g1^19*g2^7*t^8.008*y + (4*g2^11*t^8.124*y)/g1 + (3*g1^11*t^8.172*y)/g2 + (3*g2^3*t^8.287*y)/g1^9 + (3*g1^3*t^8.335*y)/g2^9 + (3*t^8.451*y)/(g1^17*g2^5) + (2*t^8.499*y)/(g1^5*g2^17) + (t^8.615*y)/(g1^25*g2^13) + (t^8.663*y)/(g1^13*g2^25) + g1^16*g2^16*t^8.673*y + g1^8*g2^8*t^8.836*y + (g2^12*t^8.952*y)/g1^12


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46465 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{5}$ 0.6465 0.8492 0.7613 [M:[0.979, 0.7366, 0.7786, 0.7949, 1.021], q:[0.7448, 0.2762], qb:[0.4767, 0.4603], phi:[0.5105]] 2*t^2.21 + t^2.259 + t^2.336 + t^2.385 + t^2.811 + 2*t^3.063 + t^3.189 + t^3.741 + t^4.294 + t^4.343 + t^4.392 + 3*t^4.419 + 2*t^4.469 + t^4.518 + 2*t^4.545 + 3*t^4.594 + t^4.643 + t^4.671 + t^4.72 + t^4.769 + 2*t^5.021 + t^5.07 + t^5.147 + t^5.196 + 4*t^5.273 + 2*t^5.322 + 3*t^5.399 + 2*t^5.448 + t^5.525 + t^5.574 + t^5.622 + t^5.874 + t^5.951 - 2*t^6. - t^4.531/y - t^4.531*y detail
46365 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{2}$ 0.6256 0.8271 0.7564 [M:[0.9254, 0.7761, 0.9254, 0.8358], q:[0.7313, 0.3433], qb:[0.3433, 0.4328], phi:[0.5373]] t^2.06 + 3*t^2.328 + t^2.508 + 2*t^2.776 + t^3.224 + 2*t^3.672 + 2*t^3.94 + t^4.119 + t^4.209 + 3*t^4.388 + t^4.567 + 6*t^4.657 + 5*t^4.836 + t^5.015 + 6*t^5.104 + 3*t^5.284 + 5*t^5.552 + t^5.731 + 3*t^6. - t^4.612/y - t^4.612*y detail
46503 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ 0.6516 0.8578 0.7596 [M:[0.9665, 0.7338, 0.8009, 0.8165, 0.9665], q:[0.7416, 0.2919], qb:[0.4575, 0.4419], phi:[0.5168]] 2*t^2.201 + t^2.248 + t^2.403 + t^2.449 + t^2.698 + 2*t^2.899 + t^3.302 + t^3.752 + t^4.202 + t^4.248 + t^4.295 + 3*t^4.403 + 2*t^4.45 + t^4.496 + 2*t^4.604 + 3*t^4.651 + t^4.698 + t^4.806 + t^4.852 + t^4.899 + 2*t^4.9 + t^4.946 + 5*t^5.101 + 3*t^5.148 + 2*t^5.302 + 2*t^5.349 + t^5.396 + t^5.503 + 2*t^5.597 + t^5.705 + t^5.751 + 2*t^5.799 + t^5.953 - 2*t^6. - t^4.55/y - t^4.55*y detail
46394 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ + ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$ 0.6438 0.846 0.761 [M:[0.9916, 0.7393, 0.7562, 0.7733, 1.0253], q:[0.7479, 0.2605], qb:[0.4959, 0.4788], phi:[0.5042]] 2*t^2.218 + 2*t^2.269 + t^2.32 + t^2.975 + t^3.025 + 2*t^3.076 + t^3.731 + t^4.385 + 3*t^4.436 + t^4.437 + 4*t^4.487 + t^4.488 + t^4.537 + 3*t^4.538 + t^4.539 + t^4.588 + t^4.589 + t^4.64 + 2*t^5.193 + 3*t^5.243 + t^5.244 + 4*t^5.294 + 2*t^5.295 + 2*t^5.344 + 2*t^5.345 + 2*t^5.396 + t^5.949 + t^5.999 - 2*t^6. - t^4.513/y - t^4.513*y detail
46758 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ 0.6486 0.8522 0.7611 [M:[0.9726, 0.7432, 0.7979, 0.7979], q:[0.7432, 0.2842], qb:[0.459, 0.459], phi:[0.5137]] 3*t^2.229 + 2*t^2.394 + t^2.754 + t^2.918 + t^3.082 + t^3.246 + t^3.771 + 3*t^4.295 + 6*t^4.459 + 6*t^4.623 + 3*t^4.787 + 3*t^4.983 + 5*t^5.147 + 5*t^5.312 + 3*t^5.476 + t^5.508 + 2*t^5.64 + t^5.672 + t^5.836 - t^6. - t^4.541/y - t^4.541*y detail
46605 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$ 0.6288 0.8365 0.7518 [M:[0.9289, 0.6777, 0.8199, 0.9289], q:[0.7322, 0.3389], qb:[0.4479, 0.3389], phi:[0.5355]] 2*t^2.033 + 2*t^2.36 + t^2.46 + 2*t^2.787 + t^3.213 + 3*t^3.64 + t^3.967 + 3*t^4.066 + t^4.294 + 4*t^4.393 + 2*t^4.493 + 3*t^4.72 + 6*t^4.82 + t^4.919 + 4*t^5.147 + 4*t^5.246 + 4*t^5.573 + 5*t^5.673 + 3*t^6. - t^4.607/y - t^4.607*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46044 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ 0.6335 0.8282 0.7649 [M:[0.9646, 0.7188, 0.7897], q:[0.7411, 0.2943], qb:[0.4692, 0.4245], phi:[0.5177]] 2*t^2.156 + t^2.29 + t^2.369 + t^2.681 + t^2.894 + t^3.106 + t^3.319 + t^3.497 + t^3.71 + t^4.1 + t^4.234 + 3*t^4.313 + t^4.368 + 2*t^4.447 + 2*t^4.525 + t^4.581 + t^4.66 + t^4.738 + 2*t^4.837 + t^4.971 + 3*t^5.05 + t^5.184 + 3*t^5.263 + t^5.362 + t^5.397 + 2*t^5.475 + t^5.575 + 2*t^5.653 + t^5.688 + 2*t^5.787 + 2*t^5.866 - t^6. - t^4.553/y - t^4.553*y detail