Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46056 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ + ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$ 0.7737 0.9544 0.8107 [M:[0.7809, 0.7498, 0.7498, 0.7809], q:[0.5785, 0.6406], qb:[0.6095, 0.6095], phi:[0.3905]] [M:[[0, -2, -2], [-1, -2, 0], [-1, 0, -2], [0, -2, -2]], q:[[-1, 2, 2], [1, 0, 0]], qb:[[0, 2, 0], [0, 0, 2]], phi:[[0, -1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{3}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{3}$, ${ }M_{3}M_{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{4}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{2}$ ${}$ -6 2*t^2.25 + 3*t^2.343 + 2*t^3.564 + 3*t^4.499 + 6*t^4.592 + t^4.642 + 6*t^4.686 + 2*t^4.735 + 4*t^4.829 + 2*t^4.922 + t^5.015 + 3*t^5.814 + 2*t^5.907 - 6*t^6. - 4*t^6.093 - t^6.186 + 4*t^6.749 + 9*t^6.842 + 2*t^6.892 + 12*t^6.935 + 6*t^6.985 + 10*t^7.028 + 10*t^7.078 + 3*t^7.128 + 11*t^7.171 + 4*t^7.265 - t^7.314 + 2*t^7.358 + 4*t^8.063 + 2*t^8.156 + 2*t^8.206 - 10*t^8.25 + 2*t^8.299 - 22*t^8.343 + 2*t^8.393 - 12*t^8.436 - 5*t^8.486 - 2*t^8.529 - 4*t^8.579 - 2*t^8.672 + 5*t^8.998 - t^4.171/y - (2*t^6.421)/y - (3*t^6.514)/y + t^7.499/y + (6*t^7.592)/y + (3*t^7.686)/y + (3*t^7.829)/y + (2*t^7.922)/y - (3*t^8.67)/y - (6*t^8.764)/y + (4*t^8.814)/y - (6*t^8.857)/y + (6*t^8.907)/y - t^4.171*y - 2*t^6.421*y - 3*t^6.514*y + t^7.499*y + 6*t^7.592*y + 3*t^7.686*y + 3*t^7.829*y + 2*t^7.922*y - 3*t^8.67*y - 6*t^8.764*y + 4*t^8.814*y - 6*t^8.857*y + 6*t^8.907*y t^2.25/(g1*g2^2) + t^2.25/(g1*g3^2) + (3*t^2.343)/(g2^2*g3^2) + (g2^4*g3^2*t^3.564)/g1 + (g2^2*g3^4*t^3.564)/g1 + t^4.499/(g1^2*g2^4) + t^4.499/(g1^2*g3^4) + t^4.499/(g1^2*g2^2*g3^2) + (3*t^4.592)/(g1*g2^2*g3^4) + (3*t^4.592)/(g1*g2^4*g3^2) + (g2^3*g3^3*t^4.642)/g1^2 + (6*t^4.686)/(g2^4*g3^4) + (g2^3*g3*t^4.735)/g1 + (g2*g3^3*t^4.735)/g1 + (g2^3*t^4.829)/g3 + 2*g2*g3*t^4.829 + (g3^3*t^4.829)/g2 + (g1*g2*t^4.922)/g3 + (g1*g3*t^4.922)/g2 + (g1^2*t^5.015)/(g2*g3) + (g2^4*t^5.814)/g1^2 + (g2^2*g3^2*t^5.814)/g1^2 + (g3^4*t^5.814)/g1^2 + (g2^2*t^5.907)/g1 + (g3^2*t^5.907)/g1 - 4*t^6. - (g2^2*t^6.)/g3^2 - (g3^2*t^6.)/g2^2 - (2*g1*t^6.093)/g2^2 - (2*g1*t^6.093)/g3^2 - (g1^2*t^6.186)/(g2^2*g3^2) + t^6.749/(g1^3*g2^6) + t^6.749/(g1^3*g3^6) + t^6.749/(g1^3*g2^2*g3^4) + t^6.749/(g1^3*g2^4*g3^2) + (3*t^6.842)/(g1^2*g2^2*g3^6) + (3*t^6.842)/(g1^2*g2^4*g3^4) + (3*t^6.842)/(g1^2*g2^6*g3^2) + (g2^3*g3*t^6.892)/g1^3 + (g2*g3^3*t^6.892)/g1^3 + (6*t^6.935)/(g1*g2^4*g3^6) + (6*t^6.935)/(g1*g2^6*g3^4) + (g2^3*t^6.985)/(g1^2*g3) + (4*g2*g3*t^6.985)/g1^2 + (g3^3*t^6.985)/(g1^2*g2) + (10*t^7.028)/(g2^6*g3^6) + (g2^3*t^7.078)/(g1*g3^3) + (4*g2*t^7.078)/(g1*g3) + (4*g3*t^7.078)/(g1*g2) + (g3^3*t^7.078)/(g1*g2^3) + (g2^8*g3^4*t^7.128)/g1^2 + (g2^6*g3^6*t^7.128)/g1^2 + (g2^4*g3^8*t^7.128)/g1^2 + (3*g2*t^7.171)/g3^3 + (5*t^7.171)/(g2*g3) + (3*g3*t^7.171)/g2^3 + (2*g1*t^7.265)/(g2*g3^3) + (2*g1*t^7.265)/(g2^3*g3) - g2^4*g3^4*t^7.314 + (2*g1^2*t^7.358)/(g2^3*g3^3) + (g2^2*t^8.063)/g1^3 + (g2^4*t^8.063)/(g1^3*g3^2) + (g3^2*t^8.063)/g1^3 + (g3^4*t^8.063)/(g1^3*g2^2) + (g2^2*t^8.156)/(g1^2*g3^2) + (g3^2*t^8.156)/(g1^2*g2^2) + (g2^7*g3^5*t^8.206)/g1^3 + (g2^5*g3^7*t^8.206)/g1^3 - (4*t^8.25)/(g1*g2^2) - (g2^2*t^8.25)/(g1*g3^4) - (4*t^8.25)/(g1*g3^2) - (g3^2*t^8.25)/(g1*g2^4) + (g2^7*g3^3*t^8.299)/g1^2 + (g2^3*g3^7*t^8.299)/g1^2 - (4*t^8.343)/g2^4 - (4*t^8.343)/g3^4 - (14*t^8.343)/(g2^2*g3^2) + (g2^7*g3*t^8.393)/g1 + (g2*g3^7*t^8.393)/g1 - (6*g1*t^8.436)/(g2^2*g3^4) - (6*g1*t^8.436)/(g2^4*g3^2) - g2^5*g3*t^8.486 - 3*g2^3*g3^3*t^8.486 - g2*g3^5*t^8.486 - (2*g1^2*t^8.529)/(g2^4*g3^4) - 2*g1*g2^3*g3*t^8.579 - 2*g1*g2*g3^3*t^8.579 - 2*g1^2*g2*g3*t^8.672 + t^8.998/(g1^4*g2^8) + t^8.998/(g1^4*g3^8) + t^8.998/(g1^4*g2^2*g3^6) + t^8.998/(g1^4*g2^4*g3^4) + t^8.998/(g1^4*g2^6*g3^2) - t^4.171/(g2*g3*y) - t^6.421/(g1*g2*g3^3*y) - t^6.421/(g1*g2^3*g3*y) - (3*t^6.514)/(g2^3*g3^3*y) + t^7.499/(g1^2*g2^2*g3^2*y) + (3*t^7.592)/(g1*g2^2*g3^4*y) + (3*t^7.592)/(g1*g2^4*g3^2*y) + (3*t^7.686)/(g2^4*g3^4*y) + (3*g2*g3*t^7.829)/y + (g1*g2*t^7.922)/(g3*y) + (g1*g3*t^7.922)/(g2*y) - t^8.67/(g1^2*g2*g3^5*y) - t^8.67/(g1^2*g2^3*g3^3*y) - t^8.67/(g1^2*g2^5*g3*y) - (3*t^8.764)/(g1*g2^3*g3^5*y) - (3*t^8.764)/(g1*g2^5*g3^3*y) + (g2^4*t^8.814)/(g1^2*y) + (2*g2^2*g3^2*t^8.814)/(g1^2*y) + (g3^4*t^8.814)/(g1^2*y) - (6*t^8.857)/(g2^5*g3^5*y) + (3*g2^2*t^8.907)/(g1*y) + (3*g3^2*t^8.907)/(g1*y) - (t^4.171*y)/(g2*g3) - (t^6.421*y)/(g1*g2*g3^3) - (t^6.421*y)/(g1*g2^3*g3) - (3*t^6.514*y)/(g2^3*g3^3) + (t^7.499*y)/(g1^2*g2^2*g3^2) + (3*t^7.592*y)/(g1*g2^2*g3^4) + (3*t^7.592*y)/(g1*g2^4*g3^2) + (3*t^7.686*y)/(g2^4*g3^4) + 3*g2*g3*t^7.829*y + (g1*g2*t^7.922*y)/g3 + (g1*g3*t^7.922*y)/g2 - (t^8.67*y)/(g1^2*g2*g3^5) - (t^8.67*y)/(g1^2*g2^3*g3^3) - (t^8.67*y)/(g1^2*g2^5*g3) - (3*t^8.764*y)/(g1*g2^3*g3^5) - (3*t^8.764*y)/(g1*g2^5*g3^3) + (g2^4*t^8.814*y)/g1^2 + (2*g2^2*g3^2*t^8.814*y)/g1^2 + (g3^4*t^8.814*y)/g1^2 - (6*t^8.857*y)/(g2^5*g3^5) + (3*g2^2*t^8.907*y)/g1 + (3*g3^2*t^8.907*y)/g1


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46304 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ + ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}M_{3}$ 0.7125 0.866 0.8228 [M:[0.9101, 1.0, 1.0, 0.9101], q:[0.6348, 0.4551], qb:[0.5449, 0.5449], phi:[0.4551]] 3*t^2.73 + 2*t^3. + 2*t^3.539 + t^4.095 + 2*t^4.365 + 4*t^4.635 + 2*t^4.905 + t^5.174 + 5*t^5.461 + 2*t^5.73 - 3*t^6. - t^4.365/y - t^4.365*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45875 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ 0.7566 0.9235 0.8193 [M:[0.7979, 0.7634, 0.7634], q:[0.5665, 0.6356], qb:[0.601, 0.601], phi:[0.399]] 2*t^2.29 + 2*t^2.394 + 2*t^3.503 + t^3.606 + 3*t^4.58 + t^4.596 + 4*t^4.684 + 2*t^4.699 + 3*t^4.788 + 4*t^4.803 + 2*t^4.907 + t^5.01 + 3*t^5.793 + 2*t^5.896 - 4*t^6. - t^4.197/y - t^4.197*y detail