Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1303 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}M_{7}$ + ${ }M_{4}M_{8}$ | 0.7737 | 0.9544 | 0.8107 | [M:[0.7809, 0.812, 0.7498, 0.812, 0.7498, 0.7809, 1.188, 1.188], q:[0.6095, 0.6095], qb:[0.5785, 0.6406], phi:[0.3905]] | [M:[[0, -2, -2], [1, -4, -2], [-1, 0, -2], [-1, -2, 0], [1, -2, -4], [0, -2, -2], [-1, 4, 2], [1, 2, 0]], q:[[-1, 2, 2], [1, 0, 0]], qb:[[0, 2, 0], [0, 0, 2]], phi:[[0, -1, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{5}$, ${ }M_{3}$, ${ }M_{1}$, ${ }M_{6}$, ${ }\phi_{1}^{2}$, ${ }M_{8}$, ${ }M_{7}$, ${ }M_{5}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{5}M_{6}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}M_{6}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{5}M_{8}$, ${ }M_{5}M_{7}$, ${ }M_{3}M_{8}$, ${ }M_{1}M_{7}$, ${ }M_{6}M_{7}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{1}M_{8}$, ${ }M_{6}M_{8}$, ${ }M_{8}\phi_{1}^{2}$ | ${}$ | -6 | 2*t^2.25 + 3*t^2.343 + 2*t^3.564 + 3*t^4.499 + 6*t^4.592 + t^4.642 + 6*t^4.686 + 2*t^4.735 + 4*t^4.829 + 2*t^4.922 + t^5.015 + 3*t^5.814 + 2*t^5.907 - 6*t^6. - 4*t^6.093 - t^6.186 + 4*t^6.749 + 9*t^6.842 + 2*t^6.892 + 12*t^6.935 + 6*t^6.985 + 10*t^7.028 + 10*t^7.078 + 3*t^7.128 + 11*t^7.171 + 4*t^7.265 - t^7.314 + 2*t^7.358 + 4*t^8.063 + 2*t^8.156 + 2*t^8.206 - 10*t^8.25 + 2*t^8.299 - 22*t^8.343 + 2*t^8.393 - 12*t^8.436 - 5*t^8.486 - 2*t^8.529 - 4*t^8.579 - 2*t^8.672 + 5*t^8.998 - t^4.171/y - (2*t^6.421)/y - (3*t^6.514)/y + t^7.499/y + (6*t^7.592)/y + (3*t^7.686)/y + (3*t^7.829)/y + (2*t^7.922)/y - (3*t^8.67)/y - (6*t^8.764)/y + (4*t^8.814)/y - (6*t^8.857)/y + (6*t^8.907)/y - t^4.171*y - 2*t^6.421*y - 3*t^6.514*y + t^7.499*y + 6*t^7.592*y + 3*t^7.686*y + 3*t^7.829*y + 2*t^7.922*y - 3*t^8.67*y - 6*t^8.764*y + 4*t^8.814*y - 6*t^8.857*y + 6*t^8.907*y | (g1*t^2.25)/(g2^2*g3^4) + t^2.25/(g1*g3^2) + (3*t^2.343)/(g2^2*g3^2) + g1*g2^2*t^3.564 + (g2^4*g3^2*t^3.564)/g1 + (g1^2*t^4.499)/(g2^4*g3^8) + t^4.499/(g2^2*g3^6) + t^4.499/(g1^2*g3^4) + (3*g1*t^4.592)/(g2^4*g3^6) + (3*t^4.592)/(g1*g2^2*g3^4) + (g2^3*t^4.642)/g3 + (6*t^4.686)/(g2^4*g3^4) + (g1*g2*t^4.735)/g3 + (g2^3*g3*t^4.735)/g1 + (g1^2*t^4.829)/(g2*g3) + 2*g2*g3*t^4.829 + (g2^3*g3^3*t^4.829)/g1^2 + (g1*g3*t^4.922)/g2 + (g2*g3^3*t^4.922)/g1 + (g3^3*t^5.015)/g2 + (g2^4*t^5.814)/g1^2 + (g1^2*t^5.814)/g3^4 + (g2^2*t^5.814)/g3^2 + (g2^2*t^5.907)/g1 + (g1*t^5.907)/g3^2 - 4*t^6. - (g1^2*t^6.)/(g2^2*g3^2) - (g2^2*g3^2*t^6.)/g1^2 - (2*g1*t^6.093)/g2^2 - (2*g3^2*t^6.093)/g1 - (g3^2*t^6.186)/g2^2 + (g1^3*t^6.749)/(g2^6*g3^12) + (g1*t^6.749)/(g2^4*g3^10) + t^6.749/(g1*g2^2*g3^8) + t^6.749/(g1^3*g3^6) + (3*g1^2*t^6.842)/(g2^6*g3^10) + (3*t^6.842)/(g2^4*g3^8) + (3*t^6.842)/(g1^2*g2^2*g3^6) + (g1*g2*t^6.892)/g3^5 + (g2^3*t^6.892)/(g1*g3^3) + (6*g1*t^6.935)/(g2^6*g3^8) + (6*t^6.935)/(g1*g2^4*g3^6) + (g1^2*t^6.985)/(g2*g3^5) + (4*g2*t^6.985)/g3^3 + (g2^3*t^6.985)/(g1^2*g3) + (10*t^7.028)/(g2^6*g3^6) + (g1^3*t^7.078)/(g2^3*g3^5) + (4*g1*t^7.078)/(g2*g3^3) + (4*g2*t^7.078)/(g1*g3) + (g2^3*g3*t^7.078)/g1^3 + g1^2*g2^4*t^7.128 + g2^6*g3^2*t^7.128 + (g2^8*g3^4*t^7.128)/g1^2 + (3*g1^2*t^7.171)/(g2^3*g3^3) + (5*t^7.171)/(g2*g3) + (3*g2*g3*t^7.171)/g1^2 + (2*g1*t^7.265)/(g2^3*g3) + (2*g3*t^7.265)/(g1*g2) - g2^4*g3^4*t^7.314 + (2*g3*t^7.358)/g2^3 + (g1^3*t^8.063)/(g2^2*g3^8) + (g1*t^8.063)/g3^6 + (g2^2*t^8.063)/(g1*g3^4) + (g2^4*t^8.063)/(g1^3*g3^2) + (g1^2*t^8.156)/(g2^2*g3^6) + (g2^2*t^8.156)/(g1^2*g3^2) + (g1*g2^5*t^8.206)/g3 + (g2^7*g3*t^8.206)/g1 - (g2^2*t^8.25)/g1^3 - (g1^3*t^8.25)/(g2^4*g3^6) - (4*g1*t^8.25)/(g2^2*g3^4) - (4*t^8.25)/(g1*g3^2) + (g1^2*g2^3*t^8.299)/g3 + (g2^7*g3^3*t^8.299)/g1^2 - (4*t^8.343)/g1^2 - (4*g1^2*t^8.343)/(g2^4*g3^4) - (14*t^8.343)/(g2^2*g3^2) + (g1^3*g2*t^8.393)/g3 + (g2^7*g3^5*t^8.393)/g1^3 - (6*t^8.436)/(g1*g2^2) - (6*g1*t^8.436)/(g2^4*g3^2) - g1^2*g2*g3*t^8.486 - 3*g2^3*g3^3*t^8.486 - (g2^5*g3^5*t^8.486)/g1^2 - (2*t^8.529)/g2^4 - 2*g1*g2*g3^3*t^8.579 - (2*g2^3*g3^5*t^8.579)/g1 - 2*g2*g3^5*t^8.672 + (g1^4*t^8.998)/(g2^8*g3^16) + (g1^2*t^8.998)/(g2^6*g3^14) + t^8.998/(g2^4*g3^12) + t^8.998/(g1^2*g2^2*g3^10) + t^8.998/(g1^4*g3^8) - t^4.171/(g2*g3*y) - (g1*t^6.421)/(g2^3*g3^5*y) - t^6.421/(g1*g2*g3^3*y) - (3*t^6.514)/(g2^3*g3^3*y) + t^7.499/(g2^2*g3^6*y) + (3*g1*t^7.592)/(g2^4*g3^6*y) + (3*t^7.592)/(g1*g2^2*g3^4*y) + (3*t^7.686)/(g2^4*g3^4*y) + (3*g2*g3*t^7.829)/y + (g1*g3*t^7.922)/(g2*y) + (g2*g3^3*t^7.922)/(g1*y) - (g1^2*t^8.67)/(g2^5*g3^9*y) - t^8.67/(g2^3*g3^7*y) - t^8.67/(g1^2*g2*g3^5*y) - (3*g1*t^8.764)/(g2^5*g3^7*y) - (3*t^8.764)/(g1*g2^3*g3^5*y) + (g2^4*t^8.814)/(g1^2*y) + (g1^2*t^8.814)/(g3^4*y) + (2*g2^2*t^8.814)/(g3^2*y) - (6*t^8.857)/(g2^5*g3^5*y) + (3*g2^2*t^8.907)/(g1*y) + (3*g1*t^8.907)/(g3^2*y) - (t^4.171*y)/(g2*g3) - (g1*t^6.421*y)/(g2^3*g3^5) - (t^6.421*y)/(g1*g2*g3^3) - (3*t^6.514*y)/(g2^3*g3^3) + (t^7.499*y)/(g2^2*g3^6) + (3*g1*t^7.592*y)/(g2^4*g3^6) + (3*t^7.592*y)/(g1*g2^2*g3^4) + (3*t^7.686*y)/(g2^4*g3^4) + 3*g2*g3*t^7.829*y + (g1*g3*t^7.922*y)/g2 + (g2*g3^3*t^7.922*y)/g1 - (g1^2*t^8.67*y)/(g2^5*g3^9) - (t^8.67*y)/(g2^3*g3^7) - (t^8.67*y)/(g1^2*g2*g3^5) - (3*g1*t^8.764*y)/(g2^5*g3^7) - (3*t^8.764*y)/(g1*g2^3*g3^5) + (g2^4*t^8.814*y)/g1^2 + (g1^2*t^8.814*y)/g3^4 + (2*g2^2*t^8.814*y)/g3^2 - (6*t^8.857*y)/(g2^5*g3^5) + (3*g2^2*t^8.907*y)/g1 + (3*g1*t^8.907*y)/g3^2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
827 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ + ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}M_{7}$ | 0.791 | 0.9858 | 0.8024 | [M:[0.7646, 0.7921, 0.7371, 0.7646, 0.7646, 0.7646, 1.2079], q:[0.604, 0.6314], qb:[0.604, 0.6314], phi:[0.3823]] | t^2.211 + 5*t^2.294 + t^3.624 + t^4.423 + 5*t^4.505 + 15*t^4.588 + 3*t^4.771 + 4*t^4.853 + 3*t^4.936 + t^5.835 + t^5.918 - 8*t^6. - t^4.147/y - t^4.147*y | detail |