Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46035 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }\phi_{1}q_{1}^{2}$ 0.5911 0.7501 0.788 [M:[0.9703, 1.0891, 0.9703], q:[0.7426, 0.2871], qb:[0.4555, 0.4555], phi:[0.5148]] [M:[[4, 4], [-12, -12], [4, 4]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ ${}\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ -2 2*t^2.228 + 2*t^2.911 + 2*t^3.267 + 2*t^3.594 + 2*t^3.772 + 3*t^4.277 + 3*t^4.455 + 4*t^5.139 + 2*t^5.495 + 6*t^5.822 - 2*t^6. + 2*t^6.178 + 6*t^6.505 + 3*t^6.534 + 4*t^6.683 + 2*t^7.04 + 6*t^7.188 + 5*t^7.366 + t^7.545 + 2*t^7.723 + 4*t^7.871 + 10*t^8.05 - 6*t^8.228 + 5*t^8.555 + 11*t^8.733 + 2*t^8.762 - 6*t^8.911 - t^4.545/y + t^7.277/y + t^7.634/y - t^7.812/y + (4*t^8.139)/y + (4*t^8.495)/y + (5*t^8.822)/y - t^4.545*y + t^7.277*y + t^7.634*y - t^7.812*y + 4*t^8.139*y + 4*t^8.495*y + 5*t^8.822*y (g1^7*t^2.228)/g2^5 + (g2^7*t^2.228)/g1^5 + 2*g1^4*g2^4*t^2.911 + (2*t^3.267)/(g1^12*g2^12) + g1^13*g2*t^3.594 + g1*g2^13*t^3.594 + (g1^5*t^3.772)/g2^7 + (g2^5*t^3.772)/g1^7 + (g1^22*t^4.277)/g2^2 + g1^10*g2^10*t^4.277 + (g2^22*t^4.277)/g1^2 + (g1^14*t^4.455)/g2^10 + g1^2*g2^2*t^4.455 + (g2^14*t^4.455)/g1^10 + (2*g1^11*t^5.139)/g2 + (2*g2^11*t^5.139)/g1 + t^5.495/(g1^5*g2^17) + t^5.495/(g1^17*g2^5) + (g1^20*t^5.822)/g2^4 + 4*g1^8*g2^8*t^5.822 + (g2^20*t^5.822)/g1^4 - 2*t^6. + (2*t^6.178)/(g1^8*g2^8) + (g1^29*t^6.505)/g2^7 + 2*g1^17*g2^5*t^6.505 + 2*g1^5*g2^17*t^6.505 + (g2^29*t^6.505)/g1^7 + (3*t^6.534)/(g1^24*g2^24) + (g1^21*t^6.683)/g2^15 + (g1^9*t^6.683)/g2^3 + (g2^9*t^6.683)/g1^3 + (g2^21*t^6.683)/g1^15 + t^7.04/(g1^7*g2^19) + t^7.04/(g1^19*g2^7) + 2*g1^26*g2^2*t^7.188 + 2*g1^14*g2^14*t^7.188 + 2*g1^2*g2^26*t^7.188 + (2*g1^18*t^7.366)/g2^6 + g1^6*g2^6*t^7.366 + (2*g2^18*t^7.366)/g1^6 + (g1^10*t^7.545)/g2^14 - t^7.545/(g1^2*g2^2) + (g2^10*t^7.545)/g1^14 + (g1^2*t^7.723)/g2^22 + (g2^2*t^7.723)/g1^22 + (g1^35*t^7.871)/g2 + g1^23*g2^11*t^7.871 + g1^11*g2^23*t^7.871 + (g2^35*t^7.871)/g1 + (2*g1^27*t^8.05)/g2^9 + 3*g1^15*g2^3*t^8.05 + 3*g1^3*g2^15*t^8.05 + (2*g2^27*t^8.05)/g1^9 - (3*g1^7*t^8.228)/g2^5 - (3*g2^7*t^8.228)/g1^5 + (g1^44*t^8.555)/g2^4 + g1^32*g2^8*t^8.555 + g1^20*g2^20*t^8.555 + g1^8*g2^32*t^8.555 + (g2^44*t^8.555)/g1^4 + 2*g1^24*t^8.733 + (g1^36*t^8.733)/g2^12 + 5*g1^12*g2^12*t^8.733 + 2*g2^24*t^8.733 + (g2^36*t^8.733)/g1^12 + t^8.762/(g1^17*g2^29) + t^8.762/(g1^29*g2^17) + (g1^28*t^8.911)/g2^20 - (g1^16*t^8.911)/g2^8 - 6*g1^4*g2^4*t^8.911 - (g2^16*t^8.911)/g1^8 + (g2^28*t^8.911)/g1^20 - t^4.545/(g1^2*g2^2*y) + (g1^10*g2^10*t^7.277)/y + t^7.634/(g1^6*g2^6*y) - t^7.812/(g1^14*g2^14*y) + (2*g1^11*t^8.139)/(g2*y) + (2*g2^11*t^8.139)/(g1*y) + (2*t^8.495)/(g1^5*g2^17*y) + (2*t^8.495)/(g1^17*g2^5*y) + (g1^20*t^8.822)/(g2^4*y) + (3*g1^8*g2^8*t^8.822)/y + (g2^20*t^8.822)/(g1^4*y) - (t^4.545*y)/(g1^2*g2^2) + g1^10*g2^10*t^7.277*y + (t^7.634*y)/(g1^6*g2^6) - (t^7.812*y)/(g1^14*g2^14) + (2*g1^11*t^8.139*y)/g2 + (2*g2^11*t^8.139*y)/g1 + (2*t^8.495*y)/(g1^5*g2^17) + (2*t^8.495*y)/(g1^17*g2^5) + (g1^20*t^8.822*y)/g2^4 + 3*g1^8*g2^8*t^8.822*y + (g2^20*t^8.822*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45926 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ 0.6994 0.8518 0.8211 [M:[1.0407, 0.8778, 1.0407], q:[0.4796, 0.4796], qb:[0.5611, 0.5611], phi:[0.4796]] t^2.633 + 6*t^3.122 + 3*t^4.317 + 4*t^4.561 + 3*t^4.805 + t^5.267 + 2*t^5.756 - 8*t^6. - t^4.439/y - t^4.439*y detail