Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
45926 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ 0.6994 0.8518 0.8211 [X:[], M:[1.0407, 0.8778, 1.0407], q:[0.4796, 0.4796], qb:[0.5611, 0.5611], phi:[0.4796]] [X:[], M:[[0, 2, 2], [0, -6, -6], [0, 2, 2]], q:[[-1, -2, -2], [1, 0, 0]], qb:[[0, 6, 0], [0, 0, 6]], phi:[[0, -1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_1$, $ M_1$, $ M_3$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_2^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_2^2$, $ M_1M_2$, $ M_2M_3$ . -8 t^2.63 + 6*t^3.12 + 3*t^4.32 + 4*t^4.56 + 3*t^4.81 + t^5.27 + 2*t^5.76 - 8*t^6. + 16*t^6.24 + 3*t^6.95 + 7*t^7.44 + 9*t^7.68 + t^7.9 + 11*t^7.93 + 2*t^8.39 + 7*t^8.88 - t^4.44/y - t^7.07/y + t^7.32/y - t^7.56/y + t^7.81/y + (6*t^8.76)/y - t^4.44*y - t^7.07*y + t^7.32*y - t^7.56*y + t^7.81*y + 6*t^8.76*y t^2.63/(g2^6*g3^6) + g1*g2^6*t^3.12 + (g2^4*t^3.12)/(g1*g3^2) + 2*g2^2*g3^2*t^3.12 + (g3^4*t^3.12)/(g1*g2^2) + g1*g3^6*t^3.12 + t^4.32/(g1^2*g2^5*g3^5) + t^4.32/(g2^3*g3^3) + (g1^2*t^4.32)/(g2*g3) + (g2^3*t^4.56)/(g1*g3^3) + (g1*g2^5*t^4.56)/g3 + (g3^3*t^4.56)/(g1*g2^3) + (g1*g3^5*t^4.56)/g2 + (g2^11*t^4.81)/g3 + g2^5*g3^5*t^4.81 + (g3^11*t^4.81)/g2 + t^5.27/(g2^12*g3^12) + (2*t^5.76)/(g2^4*g3^4) - 4*t^6. - (g2^6*t^6.)/g3^6 - t^6./(g1^2*g2^2*g3^2) - g1^2*g2^2*g3^2*t^6. - (g3^6*t^6.)/g2^6 + (g2^6*t^6.24)/g1 + g1^2*g2^12*t^6.24 + (g2^8*t^6.24)/(g1^2*g3^4) + (g2^10*t^6.24)/g3^2 + (g2^2*g3^2*t^6.24)/g1^2 + g1*g2^8*g3^2*t^6.24 + 4*g2^4*g3^4*t^6.24 + (g3^6*t^6.24)/g1 + g1^2*g2^6*g3^6*t^6.24 + (g3^8*t^6.24)/(g1^2*g2^4) + g1*g2^2*g3^8*t^6.24 + (g3^10*t^6.24)/g2^2 + g1^2*g3^12*t^6.24 + t^6.95/(g1^2*g2^11*g3^11) + t^6.95/(g2^9*g3^9) + (g1^2*t^6.95)/(g2^7*g3^7) + t^7.44/(g1^3*g2*g3^7) + (g2*t^7.44)/(g1*g3^5) + (g1*g2^3*t^7.44)/g3^3 + t^7.44/(g1^3*g2^7*g3) - t^7.44/(g2*g3) + (g1^3*g2^5*t^7.44)/g3 + (g3*t^7.44)/(g1*g2^5) + (g1*g3^3*t^7.44)/g2^3 + (g1^3*g3^5*t^7.44)/g2 + (g2^7*t^7.68)/(g1^2*g3^5) + (g2^9*t^7.68)/g3^3 + (g1^2*g2^11*t^7.68)/g3 + (g2*g3*t^7.68)/g1^2 + g2^3*g3^3*t^7.68 + g1^2*g2^5*g3^5*t^7.68 + (g3^7*t^7.68)/(g1^2*g2^5) + (g3^9*t^7.68)/g2^3 + (g1^2*g3^11*t^7.68)/g2 + t^7.9/(g2^18*g3^18) + (g2^15*t^7.93)/(g1*g3^3) + (g1*g2^17*t^7.93)/g3 + g2^13*g3*t^7.93 + (g2^9*g3^3*t^7.93)/g1 + g1*g2^11*g3^5*t^7.93 + g2^7*g3^7*t^7.93 + (g2^3*g3^9*t^7.93)/g1 + g1*g2^5*g3^11*t^7.93 + g2*g3^13*t^7.93 + (g3^15*t^7.93)/(g1*g2^3) + (g1*g3^17*t^7.93)/g2 + (2*t^8.39)/(g2^10*g3^10) + t^8.63/(g1^4*g2^10*g3^10) - (2*t^8.63)/(g2^6*g3^6) + (g1^4*t^8.63)/(g2^2*g3^2) - g1^2*t^8.88 + t^8.88/(g1*g2^6) + t^8.88/(g1^3*g2^2*g3^8) + t^8.88/(g1*g3^6) - t^8.88/(g1^2*g2^4*g3^4) + (g1*g2^2*t^8.88)/g3^4 + t^8.88/(g1^3*g2^8*g3^2) + t^8.88/(g2^2*g3^2) + (g1^3*g2^4*t^8.88)/g3^2 + (g1*g3^2*t^8.88)/g2^4 + (g1^3*g3^4*t^8.88)/g2^2 - t^4.44/(g2*g3*y) - t^7.07/(g2^7*g3^7*y) + t^7.32/(g2^3*g3^3*y) - (g2*g3*t^7.56)/y + (g2^5*g3^5*t^7.81)/y + (g1*t^8.76)/(g2^6*y) + t^8.76/(g1*g2^2*g3^8*y) + (g1*t^8.76)/(g3^6*y) + (2*t^8.76)/(g2^4*g3^4*y) + t^8.76/(g1*g2^8*g3^2*y) - (t^4.44*y)/(g2*g3) - (t^7.07*y)/(g2^7*g3^7) + (t^7.32*y)/(g2^3*g3^3) - g2*g3*t^7.56*y + g2^5*g3^5*t^7.81*y + (g1*t^8.76*y)/g2^6 + (t^8.76*y)/(g1*g2^2*g3^8) + (g1*t^8.76*y)/g3^6 + (2*t^8.76*y)/(g2^4*g3^4) + (t^8.76*y)/(g1*g2^8*g3^2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46035 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ \phi_1q_1^2$ 0.5911 0.7501 0.788 [X:[], M:[0.9703, 1.0891, 0.9703], q:[0.7426, 0.2871], qb:[0.4555, 0.4555], phi:[0.5148]] 2*t^2.23 + 2*t^2.91 + 2*t^3.27 + 2*t^3.59 + 2*t^3.77 + 3*t^4.28 + 3*t^4.46 + 4*t^5.14 + 2*t^5.49 + 6*t^5.82 - 2*t^6. - t^4.54/y - t^4.54*y detail
46040 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ \phi_1\tilde{q}_1^2$ 0.6636 0.8114 0.8179 [X:[], M:[1.0903, 0.7292, 1.0903], q:[0.4549, 0.4549], qb:[0.7726, 0.4983], phi:[0.4549]] t^2.19 + 2*t^2.86 + 2*t^3.27 + 2*t^3.68 + 3*t^4.09 + 2*t^4.22 + t^4.35 + t^4.38 + 2*t^5.05 + 2*t^5.46 + 3*t^5.72 - 5*t^6. - t^4.36/y - t^4.36*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45869 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1\phi_1^2$ 0.7036 0.8583 0.8198 [X:[], M:[1.0499, 0.8504], q:[0.4751, 0.4751], qb:[0.5748, 0.5748], phi:[0.4751]] t^2.55 + t^2.85 + 5*t^3.15 + 3*t^4.28 + 4*t^4.57 + 3*t^4.87 + t^5.1 + t^5.4 + 2*t^5.7 - 3*t^6. - t^4.43/y - t^4.43*y detail