Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
45980 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}^{2}$ + ${ }M_{4}\phi_{1}^{2}$ | 0.6489 | 0.7994 | 0.8117 | [M:[0.6959, 0.6959, 0.6824, 1.2905], q:[0.4814, 0.8226], qb:[0.8226, 0.4543], phi:[0.3548]] | [M:[[-4, -3, 1], [-3, -4, 1], [-5, -5, 2], [2, 2, 0]], q:[[3, 3, -1], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[-1, -1, 0]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }M_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{3}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{1}M_{4}$ | ${}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$ | -3 | t^2.047 + 2*t^2.088 + t^2.807 + t^3.79 + 2*t^3.831 + 2*t^3.871 + t^4.094 + 2*t^4.135 + 3*t^4.176 + t^4.854 + 2*t^4.895 + t^4.936 + t^5.614 + t^5.837 + 4*t^5.878 + 5*t^5.919 + 2*t^5.959 - 3*t^6. - 2*t^6.041 - t^6.081 + t^6.141 + 2*t^6.182 + 3*t^6.223 + 4*t^6.263 + t^6.597 + 2*t^6.638 + 2*t^6.679 + t^6.901 + 2*t^6.942 + 3*t^6.983 - 2*t^7.064 - 2*t^7.105 - t^7.146 + t^7.58 + 2*t^7.621 + 5*t^7.662 + 4*t^7.702 + t^7.743 - 2*t^7.784 - t^7.824 + t^7.884 + 4*t^7.925 + 8*t^7.966 + 6*t^8.006 - t^8.047 - 8*t^8.088 - 4*t^8.129 - 2*t^8.169 + t^8.188 + 2*t^8.229 + 3*t^8.27 + 4*t^8.311 + 5*t^8.351 + t^8.422 + t^8.644 + 4*t^8.685 + 5*t^8.726 + 2*t^8.767 - 3*t^8.807 - 4*t^8.848 - 2*t^8.889 + t^8.949 + 2*t^8.989 - t^4.064/y - t^6.111/y - (2*t^6.152)/y + (2*t^7.135)/y + t^7.176/y + t^7.854/y + (2*t^7.895)/y + (2*t^7.976)/y + t^8.017/y - t^8.158/y - (2*t^8.199)/y - (3*t^8.24)/y + t^8.837/y + (4*t^8.878)/y + (6*t^8.919)/y + (4*t^8.959)/y - t^4.064*y - t^6.111*y - 2*t^6.152*y + 2*t^7.135*y + t^7.176*y + t^7.854*y + 2*t^7.895*y + 2*t^7.976*y + t^8.017*y - t^8.158*y - 2*t^8.199*y - 3*t^8.24*y + t^8.837*y + 4*t^8.878*y + 6*t^8.919*y + 4*t^8.959*y | (g3^2*t^2.047)/(g1^5*g2^5) + (g3*t^2.088)/(g1^3*g2^4) + (g3*t^2.088)/(g1^4*g2^3) + g1^3*g2^3*t^2.807 + (g3^2*t^3.79)/(g1*g2) + g1*g3*t^3.831 + g2*g3*t^3.831 + 2*g1^2*g2^2*t^3.871 + (g3^4*t^4.094)/(g1^10*g2^10) + (g3^3*t^4.135)/(g1^8*g2^9) + (g3^3*t^4.135)/(g1^9*g2^8) + (g3^2*t^4.176)/(g1^6*g2^8) + (g3^2*t^4.176)/(g1^7*g2^7) + (g3^2*t^4.176)/(g1^8*g2^6) + (g3^2*t^4.854)/(g1^2*g2^2) + (g3*t^4.895)/g1 + (g3*t^4.895)/g2 + g1*g2*t^4.936 + g1^6*g2^6*t^5.614 + (g3^4*t^5.837)/(g1^6*g2^6) + (2*g3^3*t^5.878)/(g1^4*g2^5) + (2*g3^3*t^5.878)/(g1^5*g2^4) + (g3^2*t^5.919)/(g1^2*g2^4) + (3*g3^2*t^5.919)/(g1^3*g2^3) + (g3^2*t^5.919)/(g1^4*g2^2) + (g3*t^5.959)/(g1*g2^2) + (g3*t^5.959)/(g1^2*g2) - 3*t^6. - (g1^2*g2*t^6.041)/g3 - (g1*g2^2*t^6.041)/g3 - (g1^3*g2^3*t^6.081)/g3^2 + (g3^6*t^6.141)/(g1^15*g2^15) + (g3^5*t^6.182)/(g1^13*g2^14) + (g3^5*t^6.182)/(g1^14*g2^13) + (g3^4*t^6.223)/(g1^11*g2^13) + (g3^4*t^6.223)/(g1^12*g2^12) + (g3^4*t^6.223)/(g1^13*g2^11) + (g3^3*t^6.263)/(g1^9*g2^12) + (g3^3*t^6.263)/(g1^10*g2^11) + (g3^3*t^6.263)/(g1^11*g2^10) + (g3^3*t^6.263)/(g1^12*g2^9) + g1^2*g2^2*g3^2*t^6.597 + g1^4*g2^3*g3*t^6.638 + g1^3*g2^4*g3*t^6.638 + 2*g1^5*g2^5*t^6.679 + (g3^4*t^6.901)/(g1^7*g2^7) + (g3^3*t^6.942)/(g1^5*g2^6) + (g3^3*t^6.942)/(g1^6*g2^5) + (g3^2*t^6.983)/(g1^3*g2^5) + (g3^2*t^6.983)/(g1^4*g2^4) + (g3^2*t^6.983)/(g1^5*g2^3) - (2*t^7.064)/(g1*g2) - (g1*t^7.105)/g3 - (g2*t^7.105)/g3 - (g1^2*g2^2*t^7.146)/g3^2 + (g3^4*t^7.58)/(g1^2*g2^2) + (g3^3*t^7.621)/g1 + (g3^3*t^7.621)/g2 + g1^2*g3^2*t^7.662 + 3*g1*g2*g3^2*t^7.662 + g2^2*g3^2*t^7.662 + 2*g1^3*g2^2*g3*t^7.702 + 2*g1^2*g2^3*g3*t^7.702 + g1^4*g2^4*t^7.743 - (g1^6*g2^5*t^7.784)/g3 - (g1^5*g2^6*t^7.784)/g3 - (g1^7*g2^7*t^7.824)/g3^2 + (g3^6*t^7.884)/(g1^11*g2^11) + (2*g3^5*t^7.925)/(g1^9*g2^10) + (2*g3^5*t^7.925)/(g1^10*g2^9) + (2*g3^4*t^7.966)/(g1^7*g2^9) + (4*g3^4*t^7.966)/(g1^8*g2^8) + (2*g3^4*t^7.966)/(g1^9*g2^7) + (g3^3*t^8.006)/(g1^5*g2^8) + (2*g3^3*t^8.006)/(g1^6*g2^7) + (2*g3^3*t^8.006)/(g1^7*g2^6) + (g3^3*t^8.006)/(g1^8*g2^5) + (g3^2*t^8.047)/(g1^4*g2^6) - (3*g3^2*t^8.047)/(g1^5*g2^5) + (g3^2*t^8.047)/(g1^6*g2^4) - (4*g3*t^8.088)/(g1^3*g2^4) - (4*g3*t^8.088)/(g1^4*g2^3) - t^8.129/(g1*g2^3) - (2*t^8.129)/(g1^2*g2^2) - t^8.129/(g1^3*g2) - t^8.169/(g1*g3) - t^8.169/(g2*g3) + (g3^8*t^8.188)/(g1^20*g2^20) + (g3^7*t^8.229)/(g1^18*g2^19) + (g3^7*t^8.229)/(g1^19*g2^18) + (g3^6*t^8.27)/(g1^16*g2^18) + (g3^6*t^8.27)/(g1^17*g2^17) + (g3^6*t^8.27)/(g1^18*g2^16) + (g3^5*t^8.311)/(g1^14*g2^17) + (g3^5*t^8.311)/(g1^15*g2^16) + (g3^5*t^8.311)/(g1^16*g2^15) + (g3^5*t^8.311)/(g1^17*g2^14) + (g3^4*t^8.351)/(g1^12*g2^16) + (g3^4*t^8.351)/(g1^13*g2^15) + (g3^4*t^8.351)/(g1^14*g2^14) + (g3^4*t^8.351)/(g1^15*g2^13) + (g3^4*t^8.351)/(g1^16*g2^12) + g1^9*g2^9*t^8.422 + (g3^4*t^8.644)/(g1^3*g2^3) + (2*g3^3*t^8.685)/(g1*g2^2) + (2*g3^3*t^8.685)/(g1^2*g2) + 3*g3^2*t^8.726 + (g1*g3^2*t^8.726)/g2 + (g2*g3^2*t^8.726)/g1 + g1^2*g2*g3*t^8.767 + g1*g2^2*g3*t^8.767 - 3*g1^3*g2^3*t^8.807 - (2*g1^5*g2^4*t^8.848)/g3 - (2*g1^4*g2^5*t^8.848)/g3 - (2*g1^6*g2^6*t^8.889)/g3^2 + (g3^6*t^8.949)/(g1^12*g2^12) + (g3^5*t^8.989)/(g1^10*g2^11) + (g3^5*t^8.989)/(g1^11*g2^10) - t^4.064/(g1*g2*y) - (g3^2*t^6.111)/(g1^6*g2^6*y) - (g3*t^6.152)/(g1^4*g2^5*y) - (g3*t^6.152)/(g1^5*g2^4*y) + (g3^3*t^7.135)/(g1^8*g2^9*y) + (g3^3*t^7.135)/(g1^9*g2^8*y) + (g3^2*t^7.176)/(g1^7*g2^7*y) + (g3^2*t^7.854)/(g1^2*g2^2*y) + (g3*t^7.895)/(g1*y) + (g3*t^7.895)/(g2*y) + (g1^3*g2^2*t^7.976)/(g3*y) + (g1^2*g2^3*t^7.976)/(g3*y) + (g1^4*g2^4*t^8.017)/(g3^2*y) - (g3^4*t^8.158)/(g1^11*g2^11*y) - (g3^3*t^8.199)/(g1^9*g2^10*y) - (g3^3*t^8.199)/(g1^10*g2^9*y) - (g3^2*t^8.24)/(g1^7*g2^9*y) - (g3^2*t^8.24)/(g1^8*g2^8*y) - (g3^2*t^8.24)/(g1^9*g2^7*y) + (g3^4*t^8.837)/(g1^6*g2^6*y) + (2*g3^3*t^8.878)/(g1^4*g2^5*y) + (2*g3^3*t^8.878)/(g1^5*g2^4*y) + (g3^2*t^8.919)/(g1^2*g2^4*y) + (4*g3^2*t^8.919)/(g1^3*g2^3*y) + (g3^2*t^8.919)/(g1^4*g2^2*y) + (2*g3*t^8.959)/(g1*g2^2*y) + (2*g3*t^8.959)/(g1^2*g2*y) - (t^4.064*y)/(g1*g2) - (g3^2*t^6.111*y)/(g1^6*g2^6) - (g3*t^6.152*y)/(g1^4*g2^5) - (g3*t^6.152*y)/(g1^5*g2^4) + (g3^3*t^7.135*y)/(g1^8*g2^9) + (g3^3*t^7.135*y)/(g1^9*g2^8) + (g3^2*t^7.176*y)/(g1^7*g2^7) + (g3^2*t^7.854*y)/(g1^2*g2^2) + (g3*t^7.895*y)/g1 + (g3*t^7.895*y)/g2 + (g1^3*g2^2*t^7.976*y)/g3 + (g1^2*g2^3*t^7.976*y)/g3 + (g1^4*g2^4*t^8.017*y)/g3^2 - (g3^4*t^8.158*y)/(g1^11*g2^11) - (g3^3*t^8.199*y)/(g1^9*g2^10) - (g3^3*t^8.199*y)/(g1^10*g2^9) - (g3^2*t^8.24*y)/(g1^7*g2^9) - (g3^2*t^8.24*y)/(g1^8*g2^8) - (g3^2*t^8.24*y)/(g1^9*g2^7) + (g3^4*t^8.837*y)/(g1^6*g2^6) + (2*g3^3*t^8.878*y)/(g1^4*g2^5) + (2*g3^3*t^8.878*y)/(g1^5*g2^4) + (g3^2*t^8.919*y)/(g1^2*g2^4) + (4*g3^2*t^8.919*y)/(g1^3*g2^3) + (g3^2*t^8.919*y)/(g1^4*g2^2) + (2*g3*t^8.959*y)/(g1*g2^2) + (2*g3*t^8.959*y)/(g1^2*g2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
46146 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}^{2}$ + ${ }M_{4}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ | 0.6485 | 0.7962 | 0.8144 | [M:[0.6921, 0.7101, 0.6981, 1.2959], q:[0.4749, 0.833], qb:[0.8149, 0.4689], phi:[0.3521]] | t^2.076 + t^2.094 + t^2.13 + t^2.831 + t^3.851 + t^3.87 + 2*t^3.888 + t^3.906 + t^4.152 + t^4.17 + t^4.189 + t^4.207 + t^4.225 + t^4.261 + t^4.908 + t^4.926 + t^4.944 + t^4.962 + t^5.663 + t^5.928 + 2*t^5.946 + 2*t^5.964 + 2*t^5.982 - t^6. - t^4.056/y - t^4.056*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
45886 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}^{2}$ | 0.6693 | 0.8377 | 0.7989 | [M:[0.6919, 0.6919, 0.6801], q:[0.4841, 0.8241], qb:[0.8241, 0.4605], phi:[0.3518]] | t^2.04 + 2*t^2.076 + t^2.111 + t^2.834 + t^3.818 + 2*t^3.854 + t^3.889 + t^4.08 + 2*t^4.116 + 4*t^4.151 + 2*t^4.187 + t^4.222 + t^4.874 + 2*t^4.909 + 2*t^4.945 + t^5.667 + t^5.858 + 4*t^5.894 + 5*t^5.929 + 2*t^5.965 - 2*t^6. - t^4.055/y - t^4.055*y | detail |