Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
458 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{3}M_{6}$ 0.6489 0.7994 0.8117 [M:[0.6959, 1.2905, 0.7366, 0.6959, 0.6824, 1.2634], q:[0.8226, 0.8226], qb:[0.4814, 0.4543], phi:[0.3548]] [M:[[1, -4, -1], [0, 2, 2], [0, 1, -5], [-1, -3, 0], [0, -5, 1], [0, -1, 5]], q:[[-1, 1, 1], [1, 0, 0]], qb:[[0, 3, 0], [0, 0, 3]], phi:[[0, -1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{5}$, ${ }M_{4}$, ${ }M_{1}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{4}M_{5}$, ${ }M_{4}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{1}M_{6}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{4}M_{6}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{5}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ ${}$ -3 t^2.047 + 2*t^2.088 + t^2.807 + t^3.79 + 2*t^3.831 + 2*t^3.871 + t^4.094 + 2*t^4.135 + 3*t^4.176 + t^4.854 + 2*t^4.895 + t^4.936 + t^5.614 + t^5.837 + 4*t^5.878 + 5*t^5.919 + 2*t^5.959 - 3*t^6. - 2*t^6.041 - t^6.081 + t^6.141 + 2*t^6.182 + 3*t^6.223 + 4*t^6.263 + t^6.597 + 2*t^6.638 + 2*t^6.679 + t^6.901 + 2*t^6.942 + 3*t^6.983 - 2*t^7.064 - 2*t^7.105 - t^7.146 + t^7.58 + 2*t^7.621 + 5*t^7.662 + 4*t^7.702 + t^7.743 - 2*t^7.784 - t^7.824 + t^7.884 + 4*t^7.925 + 8*t^7.966 + 6*t^8.006 - t^8.047 - 8*t^8.088 - 4*t^8.129 - 2*t^8.169 + t^8.188 + 2*t^8.229 + 3*t^8.27 + 4*t^8.311 + 5*t^8.351 + t^8.422 + t^8.644 + 4*t^8.685 + 5*t^8.726 + 2*t^8.767 - 3*t^8.807 - 4*t^8.848 - 2*t^8.889 + t^8.949 + 2*t^8.989 - t^4.064/y - t^6.111/y - (2*t^6.152)/y + (2*t^7.135)/y + t^7.176/y + t^7.854/y + (2*t^7.895)/y + (2*t^7.976)/y + t^8.017/y - t^8.158/y - (2*t^8.199)/y - (3*t^8.24)/y + t^8.837/y + (4*t^8.878)/y + (6*t^8.919)/y + (4*t^8.959)/y - t^4.064*y - t^6.111*y - 2*t^6.152*y + 2*t^7.135*y + t^7.176*y + t^7.854*y + 2*t^7.895*y + 2*t^7.976*y + t^8.017*y - t^8.158*y - 2*t^8.199*y - 3*t^8.24*y + t^8.837*y + 4*t^8.878*y + 6*t^8.919*y + 4*t^8.959*y (g3*t^2.047)/g2^5 + t^2.088/(g1*g2^3) + (g1*t^2.088)/(g2^4*g3) + g2^3*g3^3*t^2.807 + (g3^5*t^3.79)/g2 + g1*g3^3*t^3.831 + (g2*g3^4*t^3.831)/g1 + 2*g2^2*g3^2*t^3.871 + (g3^2*t^4.094)/g2^10 + (g1*t^4.135)/g2^9 + (g3*t^4.135)/(g1*g2^8) + t^4.176/(g1^2*g2^6) + (g1^2*t^4.176)/(g2^8*g3^2) + t^4.176/(g2^7*g3) + (g3^4*t^4.854)/g2^2 + (g1*g3^2*t^4.895)/g2 + (g3^3*t^4.895)/g1 + g2*g3*t^4.936 + g2^6*g3^6*t^5.614 + (g3^6*t^5.837)/g2^6 + (2*g1*g3^4*t^5.878)/g2^5 + (2*g3^5*t^5.878)/(g1*g2^4) + (g1^2*g3^2*t^5.919)/g2^4 + (3*g3^3*t^5.919)/g2^3 + (g3^4*t^5.919)/(g1^2*g2^2) + (g1*g3*t^5.959)/g2^2 + (g3^2*t^5.959)/(g1*g2) - 3*t^6. - (g1*g2*t^6.041)/g3^2 - (g2^2*t^6.041)/(g1*g3) - (g2^3*t^6.081)/g3^3 + (g3^3*t^6.141)/g2^15 + (g1*g3*t^6.182)/g2^14 + (g3^2*t^6.182)/(g1*g2^13) + t^6.223/g2^12 + (g1^2*t^6.223)/(g2^13*g3) + (g3*t^6.223)/(g1^2*g2^11) + t^6.263/(g1^3*g2^9) + (g1^3*t^6.263)/(g2^12*g3^3) + (g1*t^6.263)/(g2^11*g3^2) + t^6.263/(g1*g2^10*g3) + g2^2*g3^8*t^6.597 + g1*g2^3*g3^6*t^6.638 + (g2^4*g3^7*t^6.638)/g1 + 2*g2^5*g3^5*t^6.679 + (g3^5*t^6.901)/g2^7 + (g1*g3^3*t^6.942)/g2^6 + (g3^4*t^6.942)/(g1*g2^5) + (g1^2*g3*t^6.983)/g2^5 + (g3^2*t^6.983)/g2^4 + (g3^3*t^6.983)/(g1^2*g2^3) - (2*t^7.064)/(g2*g3) - (g1*t^7.105)/g3^3 - (g2*t^7.105)/(g1*g3^2) - (g2^2*t^7.146)/g3^4 + (g3^10*t^7.58)/g2^2 + (g1*g3^8*t^7.621)/g2 + (g3^9*t^7.621)/g1 + g1^2*g3^6*t^7.662 + 3*g2*g3^7*t^7.662 + (g2^2*g3^8*t^7.662)/g1^2 + 2*g1*g2^2*g3^5*t^7.702 + (2*g2^3*g3^6*t^7.702)/g1 + g2^4*g3^4*t^7.743 - g1*g2^5*g3^2*t^7.784 - (g2^6*g3^3*t^7.784)/g1 - g2^7*g3*t^7.824 + (g3^7*t^7.884)/g2^11 + (2*g1*g3^5*t^7.925)/g2^10 + (2*g3^6*t^7.925)/(g1*g2^9) + (2*g1^2*g3^3*t^7.966)/g2^9 + (4*g3^4*t^7.966)/g2^8 + (2*g3^5*t^7.966)/(g1^2*g2^7) + (g1^3*g3*t^8.006)/g2^8 + (2*g1*g3^2*t^8.006)/g2^7 + (2*g3^3*t^8.006)/(g1*g2^6) + (g3^4*t^8.006)/(g1^3*g2^5) + (g1^2*t^8.047)/g2^6 - (3*g3*t^8.047)/g2^5 + (g3^2*t^8.047)/(g1^2*g2^4) - (4*t^8.088)/(g1*g2^3) - (4*g1*t^8.088)/(g2^4*g3) - (g1^2*t^8.129)/(g2^3*g3^3) - (2*t^8.129)/(g2^2*g3^2) - t^8.129/(g1^2*g2*g3) - (g1*t^8.169)/(g2*g3^4) - t^8.169/(g1*g3^3) + (g3^4*t^8.188)/g2^20 + (g1*g3^2*t^8.229)/g2^19 + (g3^3*t^8.229)/(g1*g2^18) + (g1^2*t^8.27)/g2^18 + (g3*t^8.27)/g2^17 + (g3^2*t^8.27)/(g1^2*g2^16) + t^8.311/(g1*g2^15) + (g1^3*t^8.311)/(g2^17*g3^2) + (g1*t^8.311)/(g2^16*g3) + (g3*t^8.311)/(g1^3*g2^14) + t^8.351/(g1^4*g2^12) + (g1^4*t^8.351)/(g2^16*g3^4) + (g1^2*t^8.351)/(g2^15*g3^3) + t^8.351/(g2^14*g3^2) + t^8.351/(g1^2*g2^13*g3) + g2^9*g3^9*t^8.422 + (g3^9*t^8.644)/g2^3 + (2*g1*g3^7*t^8.685)/g2^2 + (2*g3^8*t^8.685)/(g1*g2) + (g1^2*g3^5*t^8.726)/g2 + 3*g3^6*t^8.726 + (g2*g3^7*t^8.726)/g1^2 + g1*g2*g3^4*t^8.767 + (g2^2*g3^5*t^8.767)/g1 - 3*g2^3*g3^3*t^8.807 - 2*g1*g2^4*g3*t^8.848 - (2*g2^5*g3^2*t^8.848)/g1 - 2*g2^6*t^8.889 + (g3^6*t^8.949)/g2^12 + (g1*g3^4*t^8.989)/g2^11 + (g3^5*t^8.989)/(g1*g2^10) - t^4.064/(g2*g3*y) - t^6.111/(g2^6*y) - (g1*t^6.152)/(g2^5*g3^2*y) - t^6.152/(g1*g2^4*g3*y) + (g1*t^7.135)/(g2^9*y) + (g3*t^7.135)/(g1*g2^8*y) + t^7.176/(g2^7*g3*y) + (g3^4*t^7.854)/(g2^2*y) + (g1*g3^2*t^7.895)/(g2*y) + (g3^3*t^7.895)/(g1*y) + (g2^3*t^7.976)/(g1*y) + (g1*g2^2*t^7.976)/(g3*y) + (g2^4*t^8.017)/(g3^2*y) - (g3*t^8.158)/(g2^11*y) - t^8.199/(g1*g2^9*y) - (g1*t^8.199)/(g2^10*g3*y) - (g1^2*t^8.24)/(g2^9*g3^3*y) - t^8.24/(g2^8*g3^2*y) - t^8.24/(g1^2*g2^7*g3*y) + (g3^6*t^8.837)/(g2^6*y) + (2*g1*g3^4*t^8.878)/(g2^5*y) + (2*g3^5*t^8.878)/(g1*g2^4*y) + (g1^2*g3^2*t^8.919)/(g2^4*y) + (4*g3^3*t^8.919)/(g2^3*y) + (g3^4*t^8.919)/(g1^2*g2^2*y) + (2*g1*g3*t^8.959)/(g2^2*y) + (2*g3^2*t^8.959)/(g1*g2*y) - (t^4.064*y)/(g2*g3) - (t^6.111*y)/g2^6 - (g1*t^6.152*y)/(g2^5*g3^2) - (t^6.152*y)/(g1*g2^4*g3) + (g1*t^7.135*y)/g2^9 + (g3*t^7.135*y)/(g1*g2^8) + (t^7.176*y)/(g2^7*g3) + (g3^4*t^7.854*y)/g2^2 + (g1*g3^2*t^7.895*y)/g2 + (g3^3*t^7.895*y)/g1 + (g2^3*t^7.976*y)/g1 + (g1*g2^2*t^7.976*y)/g3 + (g2^4*t^8.017*y)/g3^2 - (g3*t^8.158*y)/g2^11 - (t^8.199*y)/(g1*g2^9) - (g1*t^8.199*y)/(g2^10*g3) - (g1^2*t^8.24*y)/(g2^9*g3^3) - (t^8.24*y)/(g2^8*g3^2) - (t^8.24*y)/(g1^2*g2^7*g3) + (g3^6*t^8.837*y)/g2^6 + (2*g1*g3^4*t^8.878*y)/g2^5 + (2*g3^5*t^8.878*y)/(g1*g2^4) + (g1^2*g3^2*t^8.919*y)/g2^4 + (4*g3^3*t^8.919*y)/g2^3 + (g3^4*t^8.919*y)/(g1^2*g2^2) + (2*g1*g3*t^8.959*y)/g2^2 + (2*g3^2*t^8.959*y)/(g1*g2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
754 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{3}M_{6}$ + ${ }M_{4}M_{6}$ 0.6485 0.7962 0.8144 [M:[0.6921, 1.2959, 0.7101, 0.7101, 0.6981, 1.2899], q:[0.833, 0.8149], qb:[0.4749, 0.4689], phi:[0.3521]] t^2.076 + t^2.094 + t^2.13 + t^2.831 + t^3.851 + t^3.87 + 2*t^3.888 + t^3.906 + t^4.152 + t^4.17 + t^4.189 + t^4.207 + t^4.225 + t^4.261 + t^4.908 + t^4.926 + t^4.944 + t^4.962 + t^5.663 + t^5.928 + 2*t^5.946 + 2*t^5.964 + 2*t^5.982 - t^6. - t^4.056/y - t^4.056*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
283 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ 0.6689 0.8351 0.801 [M:[0.6951, 1.3008, 0.7072, 0.6951, 0.6911], q:[0.8252, 0.8252], qb:[0.4797, 0.4716], phi:[0.3496]] t^2.073 + 2*t^2.085 + t^2.122 + t^2.854 + 2*t^3.89 + 2*t^3.902 + t^4.147 + 2*t^4.159 + 3*t^4.171 + t^4.195 + 2*t^4.207 + t^4.243 + t^4.927 + 2*t^4.939 + t^4.951 + t^4.975 + t^5.707 + 2*t^5.964 + 5*t^5.976 + 2*t^5.988 - 3*t^6. - t^4.049/y - t^4.049*y detail