Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
45953 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$ 0.6689 0.8347 0.8013 [M:[0.6985, 0.6929, 0.7013], q:[0.8212, 0.8296], qb:[0.4775, 0.4747], phi:[0.3493]] [M:[[-2, -2], [-8, 4], [1, -5]], q:[[-4, 5], [5, -4]], qb:[[3, 0], [0, 3]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{3}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{2}$ ${}$ -2 t^2.079 + 2*t^2.096 + t^2.104 + t^2.857 + t^3.888 + t^3.896 + 2*t^3.913 + t^4.158 + 2*t^4.174 + t^4.183 + 3*t^4.191 + 2*t^4.2 + t^4.208 + t^4.935 + 3*t^4.952 + t^4.961 + t^5.713 + t^5.966 + t^5.975 + t^5.983 + 3*t^5.992 - 2*t^6. + 2*t^6.008 + t^6.017 + t^6.236 + 2*t^6.253 + t^6.262 + 3*t^6.27 + 2*t^6.279 + 5*t^6.287 + 3*t^6.295 + 2*t^6.304 + t^6.312 + t^6.744 + t^6.753 + 2*t^6.769 + t^7.014 + 2*t^7.031 - t^7.039 + 3*t^7.048 + t^7.056 + t^7.775 + t^7.784 + t^7.792 + 2*t^7.809 - t^7.817 + 2*t^7.826 + t^8.045 + t^8.054 + t^8.062 + 3*t^8.07 - t^8.079 + 2*t^8.087 - 3*t^8.096 + t^8.121 + t^8.315 + 2*t^8.332 + t^8.341 + 3*t^8.349 + 2*t^8.357 + 5*t^8.366 + 3*t^8.374 + 7*t^8.383 + 5*t^8.391 + 3*t^8.399 + 2*t^8.408 + t^8.416 + t^8.57 + t^8.823 + t^8.831 + t^8.84 + 2*t^8.848 - 4*t^8.857 + 2*t^8.865 - t^4.048/y - t^6.127/y - (2*t^6.143)/y - t^6.152/y + (2*t^7.174)/y + t^7.183/y + t^7.191/y + (2*t^7.2)/y + t^7.935/y + t^7.944/y + (4*t^7.952)/y + t^7.961/y + t^7.969/y - t^8.205/y - (2*t^8.222)/y - t^8.231/y - (3*t^8.239)/y - (2*t^8.247)/y - t^8.256/y + t^8.966/y + t^8.975/y + (2*t^8.983)/y + (5*t^8.992)/y - t^4.048*y - t^6.127*y - 2*t^6.143*y - t^6.152*y + 2*t^7.174*y + t^7.183*y + t^7.191*y + 2*t^7.2*y + t^7.935*y + t^7.944*y + 4*t^7.952*y + t^7.961*y + t^7.969*y - t^8.205*y - 2*t^8.222*y - t^8.231*y - 3*t^8.239*y - 2*t^8.247*y - t^8.256*y + t^8.966*y + t^8.975*y + 2*t^8.983*y + 5*t^8.992*y (g2^4*t^2.079)/g1^8 + (2*t^2.096)/(g1^2*g2^2) + (g1*t^2.104)/g2^5 + g1^3*g2^3*t^2.857 + (g2^8*t^3.888)/g1^4 + (g2^5*t^3.896)/g1 + (2*g1^5*t^3.913)/g2 + (g2^8*t^4.158)/g1^16 + (2*g2^2*t^4.174)/g1^10 + t^4.183/(g1^7*g2) + (3*t^4.191)/(g1^4*g2^4) + (2*t^4.2)/(g1*g2^7) + (g1^2*t^4.208)/g2^10 + (g2^7*t^4.935)/g1^5 + 3*g1*g2*t^4.952 + (g1^4*t^4.961)/g2^2 + g1^6*g2^6*t^5.713 + (g2^12*t^5.966)/g1^12 + (g2^9*t^5.975)/g1^9 + (g2^6*t^5.983)/g1^6 + (3*g2^3*t^5.992)/g1^3 - 2*t^6. + (2*g1^3*t^6.008)/g2^3 + (g1^6*t^6.017)/g2^6 + (g2^12*t^6.236)/g1^24 + (2*g2^6*t^6.253)/g1^18 + (g2^3*t^6.262)/g1^15 + (3*t^6.27)/g1^12 + (2*t^6.279)/(g1^9*g2^3) + (5*t^6.287)/(g1^6*g2^6) + (3*t^6.295)/(g1^3*g2^9) + (2*t^6.304)/g2^12 + (g1^3*t^6.312)/g2^15 + (g2^11*t^6.744)/g1 + g1^2*g2^8*t^6.753 + 2*g1^8*g2^2*t^6.769 + (g2^11*t^7.014)/g1^13 + (2*g2^5*t^7.031)/g1^7 - (g2^2*t^7.039)/g1^4 + (3*t^7.048)/(g1*g2) + (g1^2*t^7.056)/g2^4 + (g2^16*t^7.775)/g1^8 + (g2^13*t^7.784)/g1^5 + (g2^10*t^7.792)/g1^2 + 2*g1^4*g2^4*t^7.809 - g1^7*g2*t^7.817 + (2*g1^10*t^7.826)/g2^2 + (g2^16*t^8.045)/g1^20 + (g2^13*t^8.054)/g1^17 + (g2^10*t^8.062)/g1^14 + (3*g2^7*t^8.07)/g1^11 - (g2^4*t^8.079)/g1^8 + (2*g2*t^8.087)/g1^5 - (3*t^8.096)/(g1^2*g2^2) + (g1^7*t^8.121)/g2^11 + (g2^16*t^8.315)/g1^32 + (2*g2^10*t^8.332)/g1^26 + (g2^7*t^8.341)/g1^23 + (3*g2^4*t^8.349)/g1^20 + (2*g2*t^8.357)/g1^17 + (5*t^8.366)/(g1^14*g2^2) + (3*t^8.374)/(g1^11*g2^5) + (7*t^8.383)/(g1^8*g2^8) + (5*t^8.391)/(g1^5*g2^11) + (3*t^8.399)/(g1^2*g2^14) + (2*g1*t^8.408)/g2^17 + (g1^4*t^8.416)/g2^20 + g1^9*g2^9*t^8.57 + (g2^15*t^8.823)/g1^9 + (g2^12*t^8.831)/g1^6 + (g2^9*t^8.84)/g1^3 + 2*g2^6*t^8.848 - 4*g1^3*g2^3*t^8.857 + 2*g1^6*t^8.865 - t^4.048/(g1*g2*y) - (g2^3*t^6.127)/(g1^9*y) - (2*t^6.143)/(g1^3*g2^3*y) - t^6.152/(g2^6*y) + (2*g2^2*t^7.174)/(g1^10*y) + t^7.183/(g1^7*g2*y) + t^7.191/(g1^4*g2^4*y) + (2*t^7.2)/(g1*g2^7*y) + (g2^7*t^7.935)/(g1^5*y) + (g2^4*t^7.944)/(g1^2*y) + (4*g1*g2*t^7.952)/y + (g1^4*t^7.961)/(g2^2*y) + (g1^7*t^7.969)/(g2^5*y) - (g2^7*t^8.205)/(g1^17*y) - (2*g2*t^8.222)/(g1^11*y) - t^8.231/(g1^8*g2^2*y) - (3*t^8.239)/(g1^5*g2^5*y) - (2*t^8.247)/(g1^2*g2^8*y) - (g1*t^8.256)/(g2^11*y) + (g2^12*t^8.966)/(g1^12*y) + (g2^9*t^8.975)/(g1^9*y) + (2*g2^6*t^8.983)/(g1^6*y) + (5*g2^3*t^8.992)/(g1^3*y) - (t^4.048*y)/(g1*g2) - (g2^3*t^6.127*y)/g1^9 - (2*t^6.143*y)/(g1^3*g2^3) - (t^6.152*y)/g2^6 + (2*g2^2*t^7.174*y)/g1^10 + (t^7.183*y)/(g1^7*g2) + (t^7.191*y)/(g1^4*g2^4) + (2*t^7.2*y)/(g1*g2^7) + (g2^7*t^7.935*y)/g1^5 + (g2^4*t^7.944*y)/g1^2 + 4*g1*g2*t^7.952*y + (g1^4*t^7.961*y)/g2^2 + (g1^7*t^7.969*y)/g2^5 - (g2^7*t^8.205*y)/g1^17 - (2*g2*t^8.222*y)/g1^11 - (t^8.231*y)/(g1^8*g2^2) - (3*t^8.239*y)/(g1^5*g2^5) - (2*t^8.247*y)/(g1^2*g2^8) - (g1*t^8.256*y)/g2^11 + (g2^12*t^8.966*y)/g1^12 + (g2^9*t^8.975*y)/g1^9 + (2*g2^6*t^8.983*y)/g1^6 + (5*g2^3*t^8.992*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46119 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ 0.6895 0.8749 0.7881 [M:[0.6958, 0.6863, 0.7005, 0.6911], q:[0.819, 0.8331], qb:[0.4805, 0.4758], phi:[0.3479]] t^2.059 + t^2.073 + 2*t^2.087 + t^2.102 + t^2.869 + t^3.884 + t^3.898 + t^3.927 + t^4.118 + t^4.132 + 3*t^4.146 + 3*t^4.161 + 4*t^4.175 + 2*t^4.189 + t^4.203 + t^4.928 + t^4.942 + 3*t^4.956 + t^4.97 + t^5.738 + t^5.943 + 2*t^5.958 + 2*t^5.972 + 2*t^5.986 - t^6. - t^4.044/y - t^4.044*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45900 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ 0.669 0.8356 0.8006 [M:[0.7, 0.6922, 0.6922], q:[0.825, 0.825], qb:[0.4828, 0.4672], phi:[0.35]] 2*t^2.077 + 2*t^2.1 + t^2.85 + t^3.853 + 2*t^3.877 + t^3.947 + 3*t^4.153 + 4*t^4.177 + 3*t^4.2 + 2*t^4.927 + 3*t^4.95 + t^5.7 + 2*t^5.93 + 5*t^5.953 + 2*t^5.977 - 3*t^6. - t^4.05/y - t^4.05*y detail