Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
152 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ 0.6689 0.8347 0.8013 [M:[0.7013, 0.6929, 0.6985], q:[0.8254, 0.8254], qb:[0.4733, 0.4789], phi:[0.3493]] [M:[[-7, -1], [2, -10], [-4, -4]], q:[[1, 1], [1, 1]], qb:[[6, 0], [0, 6]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{3}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$ ${}M_{1}q_{2}\tilde{q}_{1}$ -2 t^2.079 + 2*t^2.096 + t^2.104 + t^2.857 + t^3.888 + t^3.896 + 2*t^3.913 + t^4.158 + 2*t^4.174 + t^4.183 + 3*t^4.191 + 2*t^4.2 + t^4.208 + t^4.935 + 3*t^4.952 + t^4.961 + t^5.713 + t^5.966 + t^5.975 + t^5.983 + 3*t^5.992 - 2*t^6. + 2*t^6.008 + t^6.017 + t^6.236 + 2*t^6.253 + t^6.262 + 3*t^6.27 + 2*t^6.279 + 5*t^6.287 + 3*t^6.295 + 2*t^6.304 + t^6.312 + t^6.744 + t^6.753 + 2*t^6.769 + t^7.014 + 2*t^7.031 - t^7.039 + 3*t^7.048 + t^7.056 + t^7.775 + t^7.784 + t^7.792 + 2*t^7.809 - t^7.817 + 2*t^7.826 + t^8.045 + t^8.054 + t^8.062 + 3*t^8.07 - t^8.079 + 2*t^8.087 - 3*t^8.096 + t^8.121 + t^8.315 + 2*t^8.332 + t^8.341 + 3*t^8.349 + 2*t^8.357 + 5*t^8.366 + 3*t^8.374 + 7*t^8.383 + 5*t^8.391 + 3*t^8.399 + 2*t^8.408 + t^8.416 + t^8.57 + t^8.823 + t^8.831 + t^8.84 + 2*t^8.848 - 4*t^8.857 + 2*t^8.865 - t^4.048/y - t^6.127/y - (2*t^6.143)/y - t^6.152/y + (2*t^7.174)/y + t^7.183/y + t^7.191/y + (2*t^7.2)/y + t^7.935/y + t^7.944/y + (4*t^7.952)/y + t^7.961/y + t^7.969/y - t^8.205/y - (2*t^8.222)/y - t^8.231/y - (3*t^8.239)/y - (2*t^8.247)/y - t^8.256/y + t^8.966/y + t^8.975/y + (2*t^8.983)/y + (5*t^8.992)/y - t^4.048*y - t^6.127*y - 2*t^6.143*y - t^6.152*y + 2*t^7.174*y + t^7.183*y + t^7.191*y + 2*t^7.2*y + t^7.935*y + t^7.944*y + 4*t^7.952*y + t^7.961*y + t^7.969*y - t^8.205*y - 2*t^8.222*y - t^8.231*y - 3*t^8.239*y - 2*t^8.247*y - t^8.256*y + t^8.966*y + t^8.975*y + 2*t^8.983*y + 5*t^8.992*y (g1^2*t^2.079)/g2^10 + (2*t^2.096)/(g1^4*g2^4) + t^2.104/(g1^7*g2) + g1^6*g2^6*t^2.857 + (g1^10*t^3.888)/g2^2 + g1^7*g2*t^3.896 + 2*g1*g2^7*t^3.913 + (g1^4*t^4.158)/g2^20 + (2*t^4.174)/(g1^2*g2^14) + t^4.183/(g1^5*g2^11) + (3*t^4.191)/(g1^8*g2^8) + (2*t^4.2)/(g1^11*g2^5) + t^4.208/(g1^14*g2^2) + (g1^8*t^4.935)/g2^4 + 3*g1^2*g2^2*t^4.952 + (g2^5*t^4.961)/g1 + g1^12*g2^12*t^5.713 + (g1^12*t^5.966)/g2^12 + (g1^9*t^5.975)/g2^9 + (g1^6*t^5.983)/g2^6 + (3*g1^3*t^5.992)/g2^3 - 2*t^6. + (2*g2^3*t^6.008)/g1^3 + (g2^6*t^6.017)/g1^6 + (g1^6*t^6.236)/g2^30 + (2*t^6.253)/g2^24 + t^6.262/(g1^3*g2^21) + (3*t^6.27)/(g1^6*g2^18) + (2*t^6.279)/(g1^9*g2^15) + (5*t^6.287)/(g1^12*g2^12) + (3*t^6.295)/(g1^15*g2^9) + (2*t^6.304)/(g1^18*g2^6) + t^6.312/(g1^21*g2^3) + g1^16*g2^4*t^6.744 + g1^13*g2^7*t^6.753 + 2*g1^7*g2^13*t^6.769 + (g1^10*t^7.014)/g2^14 + (2*g1^4*t^7.031)/g2^8 - (g1*t^7.039)/g2^5 + (3*t^7.048)/(g1^2*g2^2) + (g2*t^7.056)/g1^5 + (g1^20*t^7.775)/g2^4 + (g1^17*t^7.784)/g2 + g1^14*g2^2*t^7.792 + 2*g1^8*g2^8*t^7.809 - g1^5*g2^11*t^7.817 + 2*g1^2*g2^14*t^7.826 + (g1^14*t^8.045)/g2^22 + (g1^11*t^8.054)/g2^19 + (g1^8*t^8.062)/g2^16 + (3*g1^5*t^8.07)/g2^13 - (g1^2*t^8.079)/g2^10 + (2*t^8.087)/(g1*g2^7) - (3*t^8.096)/(g1^4*g2^4) + (g2^5*t^8.121)/g1^13 + (g1^8*t^8.315)/g2^40 + (2*g1^2*t^8.332)/g2^34 + t^8.341/(g1*g2^31) + (3*t^8.349)/(g1^4*g2^28) + (2*t^8.357)/(g1^7*g2^25) + (5*t^8.366)/(g1^10*g2^22) + (3*t^8.374)/(g1^13*g2^19) + (7*t^8.383)/(g1^16*g2^16) + (5*t^8.391)/(g1^19*g2^13) + (3*t^8.399)/(g1^22*g2^10) + (2*t^8.408)/(g1^25*g2^7) + t^8.416/(g1^28*g2^4) + g1^18*g2^18*t^8.57 + (g1^18*t^8.823)/g2^6 + (g1^15*t^8.831)/g2^3 + g1^12*t^8.84 + 2*g1^9*g2^3*t^8.848 - 4*g1^6*g2^6*t^8.857 + 2*g1^3*g2^9*t^8.865 - t^4.048/(g1^2*g2^2*y) - t^6.127/(g2^12*y) - (2*t^6.143)/(g1^6*g2^6*y) - t^6.152/(g1^9*g2^3*y) + (2*t^7.174)/(g1^2*g2^14*y) + t^7.183/(g1^5*g2^11*y) + t^7.191/(g1^8*g2^8*y) + (2*t^7.2)/(g1^11*g2^5*y) + (g1^8*t^7.935)/(g2^4*y) + (g1^5*t^7.944)/(g2*y) + (4*g1^2*g2^2*t^7.952)/y + (g2^5*t^7.961)/(g1*y) + (g2^8*t^7.969)/(g1^4*y) - (g1^2*t^8.205)/(g2^22*y) - (2*t^8.222)/(g1^4*g2^16*y) - t^8.231/(g1^7*g2^13*y) - (3*t^8.239)/(g1^10*g2^10*y) - (2*t^8.247)/(g1^13*g2^7*y) - t^8.256/(g1^16*g2^4*y) + (g1^12*t^8.966)/(g2^12*y) + (g1^9*t^8.975)/(g2^9*y) + (2*g1^6*t^8.983)/(g2^6*y) + (5*g1^3*t^8.992)/(g2^3*y) - (t^4.048*y)/(g1^2*g2^2) - (t^6.127*y)/g2^12 - (2*t^6.143*y)/(g1^6*g2^6) - (t^6.152*y)/(g1^9*g2^3) + (2*t^7.174*y)/(g1^2*g2^14) + (t^7.183*y)/(g1^5*g2^11) + (t^7.191*y)/(g1^8*g2^8) + (2*t^7.2*y)/(g1^11*g2^5) + (g1^8*t^7.935*y)/g2^4 + (g1^5*t^7.944*y)/g2 + 4*g1^2*g2^2*t^7.952*y + (g2^5*t^7.961*y)/g1 + (g2^8*t^7.969*y)/g1^4 - (g1^2*t^8.205*y)/g2^22 - (2*t^8.222*y)/(g1^4*g2^16) - (t^8.231*y)/(g1^7*g2^13) - (3*t^8.239*y)/(g1^10*g2^10) - (2*t^8.247*y)/(g1^13*g2^7) - (t^8.256*y)/(g1^16*g2^4) + (g1^12*t^8.966*y)/g2^12 + (g1^9*t^8.975*y)/g2^9 + (2*g1^6*t^8.983*y)/g2^6 + (5*g1^3*t^8.992*y)/g2^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
92 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ 0.6484 0.7955 0.815 [M:[0.7061, 0.6966], q:[0.8243, 0.8243], qb:[0.4696, 0.4759], phi:[0.3515]] t^2.09 + t^2.109 + t^2.118 + t^2.837 + t^3.872 + t^3.882 + t^3.891 + 2*t^3.901 + t^4.18 + t^4.199 + t^4.208 + t^4.218 + t^4.227 + t^4.237 + t^4.927 + 2*t^4.946 + t^4.955 + t^5.673 + t^5.962 + t^5.971 + t^5.981 + 2*t^5.99 - t^6. - t^4.054/y - t^4.054*y detail