Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
45946 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{4}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ 0.6467 0.8193 0.7892 [M:[1.1186, 0.8093, 0.8093], q:[0.4407, 0.4407], qb:[0.75, 0.3686], phi:[0.5]] [M:[[0, 1], [1, 1], [-1, 0]], q:[[-1, -1], [1, 0]], qb:[[0, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ ${}$ -5 4*t^2.428 + t^3. + 2*t^3.356 + t^3.711 + 2*t^3.928 + 3*t^4.144 + 10*t^4.856 + 4*t^5.428 + 6*t^5.784 - 5*t^6. + 4*t^6.139 - 2*t^6.216 + 8*t^6.356 + 8*t^6.572 + 3*t^6.711 - 2*t^6.928 + 2*t^7.067 - t^7.144 + 20*t^7.284 + t^7.423 - 2*t^7.5 + 2*t^7.639 - 4*t^7.716 + 12*t^7.856 + 2*t^8.072 + 12*t^8.211 + 5*t^8.289 - 20*t^8.428 + 10*t^8.567 - 8*t^8.644 + 18*t^8.784 - t^4.5/y - (2*t^6.928)/y + t^7.144/y + (5*t^7.856)/y + (2*t^8.072)/y + (4*t^8.428)/y + (8*t^8.784)/y - t^4.5*y - 2*t^6.928*y + t^7.144*y + 5*t^7.856*y + 2*t^8.072*y + 4*t^8.428*y + 8*t^8.784*y (2*t^2.428)/g1 + 2*g1*g2*t^2.428 + t^3. + 2*g2*t^3.356 + g2^2*t^3.711 + t^3.928/g1 + g1*g2*t^3.928 + g1^2*t^4.144 + t^4.144/(g1^2*g2^2) + t^4.144/g2 + (3*t^4.856)/g1^2 + 4*g2*t^4.856 + 3*g1^2*g2^2*t^4.856 + (2*t^5.428)/g1 + 2*g1*g2*t^5.428 + (3*g2*t^5.784)/g1 + 3*g1*g2^2*t^5.784 - 3*t^6. - t^6./(g1^2*g2) - g1^2*g2*t^6. + (2*g2^2*t^6.139)/g1 + 2*g1*g2^3*t^6.139 - t^6.216/(g1*g2^2) - (g1*t^6.216)/g2 + (2*t^6.356)/g1^2 + 4*g2*t^6.356 + 2*g1^2*g2^2*t^6.356 + 2*g1*t^6.572 + (2*t^6.572)/(g1^3*g2^2) + (2*t^6.572)/(g1*g2) + 2*g1^3*g2*t^6.572 + 3*g2^2*t^6.711 - t^6.928/g1 - g1*g2*t^6.928 + 2*g2^3*t^7.067 - t^7.144/g2 + (4*t^7.284)/g1^3 + (6*g2*t^7.284)/g1 + 6*g1*g2^2*t^7.284 + 4*g1^3*g2^3*t^7.284 + g2^4*t^7.423 - 2*t^7.5 + (g2^2*t^7.639)/g1 + g1*g2^3*t^7.639 - (2*t^7.716)/(g1*g2^2) - (2*g1*t^7.716)/g2 + (4*t^7.856)/g1^2 + 4*g2*t^7.856 + 4*g1^2*g2^2*t^7.856 + t^8.072/(g1^3*g2^2) + g1^3*g2*t^8.072 + (4*g2*t^8.211)/g1^2 + 4*g2^2*t^8.211 + 4*g1^2*g2^3*t^8.211 + g1^4*t^8.289 + t^8.289/(g1^4*g2^4) + t^8.289/(g1^2*g2^3) + t^8.289/g2^2 + (g1^2*t^8.289)/g2 - (8*t^8.428)/g1 - (2*t^8.428)/(g1^3*g2) - 8*g1*g2*t^8.428 - 2*g1^3*g2^2*t^8.428 + (3*g2^2*t^8.567)/g1^2 + 4*g2^3*t^8.567 + 3*g1^2*g2^4*t^8.567 - 2*g1^2*t^8.644 - (2*t^8.644)/(g1^2*g2^2) - (4*t^8.644)/g2 + (3*t^8.784)/g1^3 + (6*g2*t^8.784)/g1 + 6*g1*g2^2*t^8.784 + 3*g1^3*g2^3*t^8.784 - t^4.5/y - t^6.928/(g1*y) - (g1*g2*t^6.928)/y + t^7.144/(g2*y) + t^7.856/(g1^2*y) + (3*g2*t^7.856)/y + (g1^2*g2^2*t^7.856)/y + (g1*t^8.072)/y + t^8.072/(g1*g2*y) + (2*t^8.428)/(g1*y) + (2*g1*g2*t^8.428)/y + (4*g2*t^8.784)/(g1*y) + (4*g1*g2^2*t^8.784)/y - t^4.5*y - (t^6.928*y)/g1 - g1*g2*t^6.928*y + (t^7.144*y)/g2 + (t^7.856*y)/g1^2 + 3*g2*t^7.856*y + g1^2*g2^2*t^7.856*y + g1*t^8.072*y + (t^8.072*y)/(g1*g2) + (2*t^8.428*y)/g1 + 2*g1*g2*t^8.428*y + (4*g2*t^8.784*y)/g1 + 4*g1*g2^2*t^8.784*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46204 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{4}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ 0.666 0.8535 0.7803 [M:[1.1382, 0.8191, 0.8191, 0.7236], q:[0.4309, 0.4309], qb:[0.75, 0.3882], phi:[0.5]] t^2.171 + 4*t^2.457 + t^3. + 2*t^3.415 + 2*t^3.957 + 3*t^4.085 + t^4.342 + 4*t^4.628 + 10*t^4.915 + t^5.171 + 4*t^5.457 + 2*t^5.585 + 6*t^5.872 - 5*t^6. - t^4.5/y - t^4.5*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45906 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{4}$ 0.6988 0.8648 0.8081 [M:[0.9484, 0.9484, 0.9484], q:[0.5258, 0.5258], qb:[0.5258, 0.4226], phi:[0.5]] 6*t^2.845 + t^3. + t^4.036 + 3*t^4.345 + 6*t^4.655 + 18*t^5.691 + 6*t^5.845 - 10*t^6. - t^4.5/y - t^4.5*y detail