Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1781 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}^{4}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ | 0.6467 | 0.8193 | 0.7892 | [M:[0.8093, 1.1907, 0.8093, 1.1186, 0.8093], q:[0.75, 0.4407], qb:[0.4407, 0.3686], phi:[0.5]] | [M:[[1, 1], [-1, -1], [1, 1], [0, 1], [-1, 0]], q:[[0, 0], [-1, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{5}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{5}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{5}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{3}q_{1}\tilde{q}_{2}$ | ${}$ | -5 | 4*t^2.428 + t^3. + 2*t^3.356 + t^3.711 + 2*t^3.928 + 3*t^4.144 + 10*t^4.856 + 4*t^5.428 + 6*t^5.784 - 5*t^6. + 4*t^6.139 - 2*t^6.216 + 8*t^6.356 + 8*t^6.572 + 3*t^6.711 - 2*t^6.928 + 2*t^7.067 - t^7.144 + 20*t^7.284 + t^7.423 - 2*t^7.5 + 2*t^7.639 - 4*t^7.716 + 12*t^7.856 + 2*t^8.072 + 12*t^8.211 + 5*t^8.289 - 20*t^8.428 + 10*t^8.567 - 8*t^8.644 + 18*t^8.784 - t^4.5/y - (2*t^6.928)/y + t^7.144/y + (5*t^7.856)/y + (2*t^8.072)/y + (4*t^8.428)/y + (8*t^8.784)/y - t^4.5*y - 2*t^6.928*y + t^7.144*y + 5*t^7.856*y + 2*t^8.072*y + 4*t^8.428*y + 8*t^8.784*y | (2*t^2.428)/g1 + 2*g1*g2*t^2.428 + t^3. + 2*g2*t^3.356 + g2^2*t^3.711 + t^3.928/g1 + g1*g2*t^3.928 + g1^2*t^4.144 + t^4.144/(g1^2*g2^2) + t^4.144/g2 + (3*t^4.856)/g1^2 + 4*g2*t^4.856 + 3*g1^2*g2^2*t^4.856 + (2*t^5.428)/g1 + 2*g1*g2*t^5.428 + (3*g2*t^5.784)/g1 + 3*g1*g2^2*t^5.784 - 3*t^6. - t^6./(g1^2*g2) - g1^2*g2*t^6. + (2*g2^2*t^6.139)/g1 + 2*g1*g2^3*t^6.139 - t^6.216/(g1*g2^2) - (g1*t^6.216)/g2 + (2*t^6.356)/g1^2 + 4*g2*t^6.356 + 2*g1^2*g2^2*t^6.356 + 2*g1*t^6.572 + (2*t^6.572)/(g1^3*g2^2) + (2*t^6.572)/(g1*g2) + 2*g1^3*g2*t^6.572 + 3*g2^2*t^6.711 - t^6.928/g1 - g1*g2*t^6.928 + 2*g2^3*t^7.067 - t^7.144/g2 + (4*t^7.284)/g1^3 + (6*g2*t^7.284)/g1 + 6*g1*g2^2*t^7.284 + 4*g1^3*g2^3*t^7.284 + g2^4*t^7.423 - 2*t^7.5 + (g2^2*t^7.639)/g1 + g1*g2^3*t^7.639 - (2*t^7.716)/(g1*g2^2) - (2*g1*t^7.716)/g2 + (4*t^7.856)/g1^2 + 4*g2*t^7.856 + 4*g1^2*g2^2*t^7.856 + t^8.072/(g1^3*g2^2) + g1^3*g2*t^8.072 + (4*g2*t^8.211)/g1^2 + 4*g2^2*t^8.211 + 4*g1^2*g2^3*t^8.211 + g1^4*t^8.289 + t^8.289/(g1^4*g2^4) + t^8.289/(g1^2*g2^3) + t^8.289/g2^2 + (g1^2*t^8.289)/g2 - (8*t^8.428)/g1 - (2*t^8.428)/(g1^3*g2) - 8*g1*g2*t^8.428 - 2*g1^3*g2^2*t^8.428 + (3*g2^2*t^8.567)/g1^2 + 4*g2^3*t^8.567 + 3*g1^2*g2^4*t^8.567 - 2*g1^2*t^8.644 - (2*t^8.644)/(g1^2*g2^2) - (4*t^8.644)/g2 + (3*t^8.784)/g1^3 + (6*g2*t^8.784)/g1 + 6*g1*g2^2*t^8.784 + 3*g1^3*g2^3*t^8.784 - t^4.5/y - t^6.928/(g1*y) - (g1*g2*t^6.928)/y + t^7.144/(g2*y) + t^7.856/(g1^2*y) + (3*g2*t^7.856)/y + (g1^2*g2^2*t^7.856)/y + (g1*t^8.072)/y + t^8.072/(g1*g2*y) + (2*t^8.428)/(g1*y) + (2*g1*g2*t^8.428)/y + (4*g2*t^8.784)/(g1*y) + (4*g1*g2^2*t^8.784)/y - t^4.5*y - (t^6.928*y)/g1 - g1*g2*t^6.928*y + (t^7.144*y)/g2 + (t^7.856*y)/g1^2 + 3*g2*t^7.856*y + g1^2*g2^2*t^7.856*y + g1*t^8.072*y + (t^8.072*y)/(g1*g2) + (2*t^8.428*y)/g1 + 2*g1*g2*t^8.428*y + (4*g2*t^8.784*y)/g1 + 4*g1*g2^2*t^8.784*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
360 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}^{4}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ | 0.6314 | 0.7921 | 0.7972 | [M:[0.7994, 1.2006, 0.7994, 1.1301], q:[0.75, 0.4506], qb:[0.4193, 0.3801], phi:[0.5]] | 2*t^2.398 + t^2.492 + t^3. + 2*t^3.39 + t^3.508 + t^3.78 + t^3.898 + t^3.992 + t^4.016 + t^4.11 + t^4.204 + 3*t^4.796 + 2*t^4.89 + t^4.984 + 2*t^5.398 + t^5.492 + 3*t^5.788 + t^5.882 + t^5.906 - 2*t^6. - t^4.5/y - t^4.5*y | detail |