Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
45830 SU2adj1nf2 $\phi_1q_1^2$ + $ \phi_1^2q_2\tilde{q}_1$ 0.6515 0.7734 0.8425 [X:[], M:[], q:[0.8051, 0.6101], qb:[0.6101, 0.4152], phi:[0.3899]] [X:[], M:[], q:[[0, 1], [-1, 4]], qb:[[1, 0], [0, 3]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$\phi_1^2$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_1\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1^4$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2^2$ $\phi_1^3\tilde{q}_2^2$ -3 t^2.34 + 2*t^3.08 + 3*t^3.66 + 4*t^4.25 + t^4.68 + 3*t^4.83 - 3*t^6. + 3*t^6.15 - 4*t^6.58 + 6*t^6.74 + t^7.02 - 2*t^7.17 + 11*t^7.32 - 2*t^7.75 + 12*t^7.91 + 7*t^8.49 - t^4.17/y - t^6.51/y + t^7.83/y + (2*t^8.42)/y - t^8.85/y - t^4.17*y - t^6.51*y + t^7.83*y + 2*t^8.42*y - t^8.85*y t^2.34/g2^4 + g1*g2^3*t^3.08 + (g2^7*t^3.08)/g1 + 3*g2^4*t^3.66 + 2*g1*g2*t^4.25 + (2*g2^5*t^4.25)/g1 + t^4.68/g2^8 + (g1^2*t^4.83)/g2^2 + g2^2*t^4.83 + (g2^6*t^4.83)/g1^2 - t^6. - (g1^2*t^6.)/g2^4 - (g2^4*t^6.)/g1^2 + g1^2*g2^6*t^6.15 + g2^10*t^6.15 + (g2^14*t^6.15)/g1^2 - (2*g1*t^6.58)/g2^3 - (2*g2*t^6.58)/g1 + 3*g1*g2^7*t^6.74 + (3*g2^11*t^6.74)/g1 + t^7.02/g2^12 - (2*t^7.17)/g2^2 + 2*g1^2*g2^4*t^7.32 + 7*g2^8*t^7.32 + (2*g2^12*t^7.32)/g1^2 - (g1*t^7.75)/g2^5 - t^7.75/(g1*g2) + g1^3*g2*t^7.91 + 5*g1*g2^5*t^7.91 + (5*g2^9*t^7.91)/g1 + (g2^13*t^7.91)/g1^3 + 3*g1^2*g2^2*t^8.49 + g2^6*t^8.49 + (3*g2^10*t^8.49)/g1^2 - t^4.17/(g2^2*y) - t^6.51/(g2^6*y) + (g2^2*t^7.83)/y + (g1*t^8.42)/(g2*y) + (g2^3*t^8.42)/(g1*y) - t^8.85/(g2^10*y) - (t^4.17*y)/g2^2 - (t^6.51*y)/g2^6 + g2^2*t^7.83*y + (g1*t^8.42*y)/g2 + (g2^3*t^8.42*y)/g1 - (t^8.85*y)/g2^10


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45853 $\phi_1q_1^2$ + $ \phi_1^2q_2\tilde{q}_1$ + $ \tilde{q}_1\tilde{q}_2$ + $ \phi_1^2X_1$ 0.3451 0.3488 0.9895 [X:[1.6976], M:[], q:[0.9244, 0.4708], qb:[1.2268, 0.7732], phi:[0.1512]] t^3.28 + t^4.19 - t^6. - t^3.45/y - t^3.45*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55749 SU2adj1nf3 $\phi_1q_1q_2$ + $ \phi_1q_3^2$ + $ q_2\tilde{q}_1$ + $ \phi_1^2\tilde{q}_2\tilde{q}_3$ 0.6515 0.7734 0.8425 [X:[], M:[], q:[0.4152, 1.1949, 0.8051], qb:[0.8051, 0.6101, 0.6101], phi:[0.3899]] t^2.34 + 2*t^3.08 + 3*t^3.66 + 4*t^4.25 + t^4.68 + 3*t^4.83 - 3*t^6. - t^4.17/y - t^4.17*y detail


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
37 SU2adj1nf2 $\phi_1q_1^2$ 0.6732 0.8001 0.8414 [X:[], M:[], q:[0.7969, 0.5261], qb:[0.5261, 0.5261], phi:[0.4062]] t^2.44 + 3*t^3.16 + 3*t^3.97 + 6*t^4.38 + t^4.87 + 3*t^5.59 - 9*t^6. - t^4.22/y - t^4.22*y detail