Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
37 SU2adj1nf2 $\phi_1q_1^2$ 0.6732 0.8001 0.8414 [X:[], M:[], q:[0.7969, 0.5261], qb:[0.5261, 0.5261], phi:[0.4062]] [X:[], M:[], q:[[1, 1, 1], [7, 0, 0]], qb:[[0, 7, 0], [0, 0, 7]], phi:[[-2, -2, -2]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$\phi_1^2$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ q_1\tilde{q}_1$, $ q_1\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1^4$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$ . -9 t^2.44 + 3*t^3.16 + 3*t^3.97 + 6*t^4.38 + t^4.87 + 3*t^5.59 - 9*t^6. + 6*t^6.31 + 3*t^6.81 + 8*t^7.13 - 8*t^7.22 + t^7.31 + 15*t^7.53 + 3*t^8.03 + 10*t^8.34 - 9*t^8.44 + 18*t^8.75 + 6*t^8.84 - t^4.22/y - t^6.66/y + t^7.78/y + (3*t^8.59)/y - t^4.22*y - t^6.66*y + t^7.78*y + 3*t^8.59*y t^2.44/(g1^4*g2^4*g3^4) + g1^7*g2^7*t^3.16 + g1^7*g3^7*t^3.16 + g2^7*g3^7*t^3.16 + g1^8*g2*g3*t^3.97 + g1*g2^8*g3*t^3.97 + g1*g2*g3^8*t^3.97 + (g1^12*t^4.38)/(g2^2*g3^2) + (g1^5*g2^5*t^4.38)/g3^2 + (g2^12*t^4.38)/(g1^2*g3^2) + (g1^5*g3^5*t^4.38)/g2^2 + (g2^5*g3^5*t^4.38)/g1^2 + (g3^12*t^4.38)/(g1^2*g2^2) + t^4.87/(g1^8*g2^8*g3^8) + (g1^3*g2^3*t^5.59)/g3^4 + (g1^3*g3^3*t^5.59)/g2^4 + (g2^3*g3^3*t^5.59)/g1^4 - 3*t^6. - (g1^7*t^6.)/g2^7 - (g2^7*t^6.)/g1^7 - (g1^7*t^6.)/g3^7 - (g2^7*t^6.)/g3^7 - (g3^7*t^6.)/g1^7 - (g3^7*t^6.)/g2^7 + g1^14*g2^14*t^6.31 + g1^14*g2^7*g3^7*t^6.31 + g1^7*g2^14*g3^7*t^6.31 + g1^14*g3^14*t^6.31 + g1^7*g2^7*g3^14*t^6.31 + g2^14*g3^14*t^6.31 + (g1^8*t^6.81)/(g2^6*g3^6) + (g2^8*t^6.81)/(g1^6*g3^6) + (g3^8*t^6.81)/(g1^6*g2^6) + g1^15*g2^8*g3*t^7.13 + g1^8*g2^15*g3*t^7.13 + g1^15*g2*g3^8*t^7.13 + 2*g1^8*g2^8*g3^8*t^7.13 + g1*g2^15*g3^8*t^7.13 + g1^8*g2*g3^15*t^7.13 + g1*g2^8*g3^15*t^7.13 - (g1^5*t^7.22)/(g2^2*g3^9) - (g2^5*t^7.22)/(g1^2*g3^9) - (g1^5*t^7.22)/(g2^9*g3^2) - (2*t^7.22)/(g1^2*g2^2*g3^2) - (g2^5*t^7.22)/(g1^9*g3^2) - (g3^5*t^7.22)/(g1^2*g2^9) - (g3^5*t^7.22)/(g1^9*g2^2) + t^7.31/(g1^12*g2^12*g3^12) + (g1^19*g2^5*t^7.53)/g3^2 + (g1^12*g2^12*t^7.53)/g3^2 + (g1^5*g2^19*t^7.53)/g3^2 + (g1^19*g3^5*t^7.53)/g2^2 + 2*g1^12*g2^5*g3^5*t^7.53 + 2*g1^5*g2^12*g3^5*t^7.53 + (g2^19*g3^5*t^7.53)/g1^2 + (g1^12*g3^12*t^7.53)/g2^2 + 2*g1^5*g2^5*g3^12*t^7.53 + (g2^12*g3^12*t^7.53)/g1^2 + (g1^5*g3^19*t^7.53)/g2^2 + (g2^5*g3^19*t^7.53)/g1^2 + t^8.03/(g1*g2*g3^8) + t^8.03/(g1*g2^8*g3) + t^8.03/(g1^8*g2*g3) + (g1^20*t^8.34)/(g2*g3) + (g1^13*g2^6*t^8.34)/g3 + (g1^6*g2^13*t^8.34)/g3 + (g2^20*t^8.34)/(g1*g3) + (g1^13*g3^6*t^8.34)/g2 + g1^6*g2^6*g3^6*t^8.34 + (g2^13*g3^6*t^8.34)/g1 + (g1^6*g3^13*t^8.34)/g2 + (g2^6*g3^13*t^8.34)/g1 + (g3^20*t^8.34)/(g1*g2) - (g1^3*t^8.44)/(g2^4*g3^11) - (g2^3*t^8.44)/(g1^4*g3^11) - (g1^3*t^8.44)/(g2^11*g3^4) - (3*t^8.44)/(g1^4*g2^4*g3^4) - (g2^3*t^8.44)/(g1^11*g3^4) - (g3^3*t^8.44)/(g1^4*g2^11) - (g3^3*t^8.44)/(g1^11*g2^4) + (g1^24*t^8.75)/(g2^4*g3^4) + (g1^17*g2^3*t^8.75)/g3^4 + (2*g1^10*g2^10*t^8.75)/g3^4 + (g1^3*g2^17*t^8.75)/g3^4 + (g2^24*t^8.75)/(g1^4*g3^4) + (g1^17*g3^3*t^8.75)/g2^4 + g1^10*g2^3*g3^3*t^8.75 + g1^3*g2^10*g3^3*t^8.75 + (g2^17*g3^3*t^8.75)/g1^4 + (2*g1^10*g3^10*t^8.75)/g2^4 + g1^3*g2^3*g3^10*t^8.75 + (2*g2^10*g3^10*t^8.75)/g1^4 + (g1^3*g3^17*t^8.75)/g2^4 + (g2^3*g3^17*t^8.75)/g1^4 + (g3^24*t^8.75)/(g1^4*g2^4) + t^8.84/g1^14 + t^8.84/g2^14 + t^8.84/(g1^7*g2^7) + t^8.84/g3^14 + t^8.84/(g1^7*g3^7) + t^8.84/(g2^7*g3^7) - t^4.22/(g1^2*g2^2*g3^2*y) - t^6.66/(g1^6*g2^6*g3^6*y) + (g1^2*g2^2*g3^2*t^7.78)/y + (g1^3*g2^3*t^8.59)/(g3^4*y) + (g1^3*g3^3*t^8.59)/(g2^4*y) + (g2^3*g3^3*t^8.59)/(g1^4*y) - (t^4.22*y)/(g1^2*g2^2*g3^2) - (t^6.66*y)/(g1^6*g2^6*g3^6) + g1^2*g2^2*g3^2*t^7.78*y + (g1^3*g2^3*t^8.59*y)/g3^4 + (g1^3*g3^3*t^8.59*y)/g2^4 + (g2^3*g3^3*t^8.59*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46 $\phi_1q_1^2$ + $ M_1\phi_1^2$ 0.6584 0.7801 0.844 [X:[], M:[1.1579], q:[0.7895, 0.5088], qb:[0.5088, 0.5088], phi:[0.4211]] 3*t^3.05 + t^3.47 + 3*t^3.89 + 6*t^4.32 - 9*t^6. - t^4.26/y - t^4.26*y detail {a: 3803/5776, c: 2253/2888, M1: 22/19, q1: 15/19, q2: 29/57, qb1: 29/57, qb2: 29/57, phi1: 8/19}
1668 $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ 0.6817 0.8108 0.8408 [X:[], M:[0.8681], q:[0.8067, 0.5659], qb:[0.5659, 0.515], phi:[0.3866]] t^2.32 + t^2.6 + 2*t^3.24 + t^3.96 + 2*t^4.12 + t^4.25 + 2*t^4.4 + 3*t^4.56 + t^4.64 + t^4.92 + t^5.21 + 2*t^5.56 - 5*t^6. - t^4.16/y - t^4.16*y detail
43 $\phi_1q_1^2$ + $ \phi_1q_2^2$ 0.6076 0.7195 0.8446 [X:[], M:[], q:[0.8211, 0.8211], qb:[0.4632, 0.4632], phi:[0.3578]] t^2.15 + t^2.78 + 7*t^3.85 + t^4.29 + 2*t^4.93 + t^5.56 - 2*t^6. - t^4.07/y - t^4.07*y detail
45830 $\phi_1q_1^2$ + $ \phi_1^2q_2\tilde{q}_1$ 0.6515 0.7734 0.8425 [X:[], M:[], q:[0.8051, 0.6101], qb:[0.6101, 0.4152], phi:[0.3899]] t^2.34 + 2*t^3.08 + 3*t^3.66 + 4*t^4.25 + t^4.68 + 3*t^4.83 - 3*t^6. - t^4.17/y - t^4.17*y detail
44 $\phi_1q_1^2$ + $ \phi_1^2\tilde{q}_1\tilde{q}_2$ 0.6515 0.7734 0.8425 [X:[], M:[], q:[0.8051, 0.4152], qb:[0.6101, 0.6101], phi:[0.3899]] t^2.34 + 2*t^3.08 + 3*t^3.66 + 4*t^4.25 + t^4.68 + 3*t^4.83 - 3*t^6. - t^4.17/y - t^4.17*y detail
42 $\phi_1q_1^2$ + $ \phi_1^4$ 0.6289 0.7852 0.801 [X:[], M:[], q:[0.75, 0.4167], qb:[0.4167, 0.4167], phi:[0.5]] 3*t^2.5 + t^3. + 3*t^3.5 + 6*t^4. + 6*t^5. + 3*t^5.5 - t^4.5/y - t^4.5*y detail {a: 161/256, c: 201/256, q1: 3/4, q2: 5/12, qb1: 5/12, qb2: 5/12, phi1: 1/2}
45 $\phi_1q_1^2$ + $ q_1q_2$ + $ \phi_1^2X_1$ 0.4527 0.4986 0.9078 [X:[1.5042], M:[], q:[0.8761, 1.1239], qb:[0.5042, 0.5042], phi:[0.2479]] t^3.03 + 3*t^3.77 + t^4.51 - 4*t^6. - t^3.74/y - t^3.74*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55675 SU2adj1nf3 $\phi_1q_1q_2$ + $ \phi_1q_3^2$ + $ q_2\tilde{q}_1$ 0.6732 0.8001 0.8414 [X:[], M:[], q:[0.5261, 1.0677, 0.7969], qb:[0.9323, 0.5261, 0.5261], phi:[0.4062]] t^2.44 + 3*t^3.16 + 3*t^3.97 + 6*t^4.38 + t^4.87 + 3*t^5.59 - 9*t^6. - t^4.22/y - t^4.22*y detail


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
36 SU2adj1nf2 . 0.7103 0.8462 0.8394 [X:[], M:[], q:[0.5651, 0.5651], qb:[0.5651, 0.5651], phi:[0.4349]] t^2.61 + 6*t^3.39 + 10*t^4.7 + t^5.22 - 10*t^6. - t^4.3/y - t^4.3*y detail