Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
4472 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_5M_6$ + $ M_7q_1\tilde{q}_1$ + $ M_8q_1\tilde{q}_2$ 0.6271 0.8133 0.771 [X:[], M:[0.9796, 1.0612, 1.0204, 0.9388, 0.7449, 1.2551, 0.7857, 0.7857], q:[0.7449, 0.2755], qb:[0.4694, 0.4694], phi:[0.5102]] [X:[], M:[[4], [-12], [-4], [12], [1], [-1], [-7], [-7]], q:[[1], [-5]], qb:[[6], [6]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ M_7$, $ M_8$, $ M_4$, $ M_3$, $ \phi_1^2$, $ \phi_1q_2^2$, $ M_6$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_1^2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ \phi_1q_1q_2$, $ M_7q_2\tilde{q}_1$, $ M_8q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_2$, $ M_8q_2\tilde{q}_2$, $ M_7^2$, $ M_7M_8$, $ M_8^2$, $ M_4q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_4M_7$, $ M_4M_8$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_3M_7$, $ M_3M_8$, $ M_7\phi_1^2$, $ M_8\phi_1^2$, $ \phi_1q_2^3\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_2$, $ M_7\phi_1q_2^2$, $ M_8\phi_1q_2^2$, $ M_4^2$, $ M_3M_4$, $ M_4\phi_1^2$ $M_4\phi_1q_2^2$, $ M_6q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_2^2$ -1 2*t^2.23 + 2*t^2.36 + t^2.82 + 2*t^3.06 + t^3.18 + 2*t^3.77 + 3*t^4.35 + 3*t^4.47 + 4*t^4.59 + 3*t^4.71 + 2*t^5.05 + 2*t^5.17 + 4*t^5.3 + 4*t^5.42 + 2*t^5.54 + t^5.63 + t^5.88 - t^6. + 5*t^6.12 + 2*t^6.24 + t^6.37 + 4*t^6.58 + 6*t^6.7 + 6*t^6.83 + 6*t^6.95 + 4*t^7.07 + 3*t^7.16 + 5*t^7.41 + 7*t^7.53 + 7*t^7.65 + 6*t^7.78 + 2*t^7.87 + 3*t^7.9 + 2*t^8.11 - 4*t^8.23 + t^8.45 + 8*t^8.48 + 4*t^8.6 + 6*t^8.69 + 2*t^8.72 + 5*t^8.94 - t^4.53/y - (2*t^6.89)/y + (2*t^7.47)/y + (3*t^7.59)/y + t^7.71/y + (2*t^8.05)/y + (4*t^8.17)/y + (4*t^8.3)/y + (6*t^8.42)/y + (2*t^8.54)/y + (2*t^8.88)/y - t^4.53*y - 2*t^6.89*y + 2*t^7.47*y + 3*t^7.59*y + t^7.71*y + 2*t^8.05*y + 4*t^8.17*y + 4*t^8.3*y + 6*t^8.42*y + 2*t^8.54*y + 2*t^8.88*y 2*g1*t^2.23 + (2*t^2.36)/g1^7 + g1^12*t^2.82 + (2*t^3.06)/g1^4 + t^3.18/g1^12 + (2*t^3.77)/g1 + 3*g1^10*t^4.35 + 3*g1^2*t^4.47 + (4*t^4.59)/g1^6 + (3*t^4.71)/g1^14 + 2*g1^13*t^5.05 + 2*g1^5*t^5.17 + (4*t^5.3)/g1^3 + (4*t^5.42)/g1^11 + (2*t^5.54)/g1^19 + g1^24*t^5.63 + g1^8*t^5.88 - t^6. + (5*t^6.12)/g1^8 + (2*t^6.24)/g1^16 + t^6.37/g1^24 + 4*g1^11*t^6.58 + 6*g1^3*t^6.7 + (6*t^6.83)/g1^5 + (6*t^6.95)/g1^13 + (4*t^7.07)/g1^21 + 3*g1^22*t^7.16 + 5*g1^6*t^7.41 + (7*t^7.53)/g1^2 + (7*t^7.65)/g1^10 + (6*t^7.78)/g1^18 + 2*g1^25*t^7.87 + (3*t^7.9)/g1^26 + 2*g1^9*t^8.11 - 4*g1*t^8.23 + g1^36*t^8.45 + (8*t^8.48)/g1^15 + (4*t^8.6)/g1^23 + 6*g1^20*t^8.69 + (2*t^8.72)/g1^31 + 5*g1^4*t^8.94 - t^4.53/(g1^2*y) - (2*t^6.89)/(g1^9*y) + (2*g1^2*t^7.47)/y + (3*t^7.59)/(g1^6*y) + t^7.71/(g1^14*y) + (2*g1^13*t^8.05)/y + (4*g1^5*t^8.17)/y + (4*t^8.3)/(g1^3*y) + (6*t^8.42)/(g1^11*y) + (2*t^8.54)/(g1^19*y) + (2*g1^8*t^8.88)/y - (t^4.53*y)/g1^2 - (2*t^6.89*y)/g1^9 + 2*g1^2*t^7.47*y + (3*t^7.59*y)/g1^6 + (t^7.71*y)/g1^14 + 2*g1^13*t^8.05*y + 4*g1^5*t^8.17*y + (4*t^8.3*y)/g1^3 + (6*t^8.42*y)/g1^11 + (2*t^8.54*y)/g1^19 + 2*g1^8*t^8.88*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2428 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_5M_6$ + $ M_7q_1\tilde{q}_1$ 0.6101 0.7833 0.7789 [X:[], M:[0.9726, 1.0823, 1.0274, 0.9177, 0.7431, 1.2569, 0.798], q:[0.7431, 0.2843], qb:[0.4589, 0.4589], phi:[0.5137]] 2*t^2.23 + t^2.39 + t^2.75 + 2*t^3.08 + t^3.25 + t^3.61 + 2*t^3.77 + 3*t^4.29 + 3*t^4.46 + 2*t^4.62 + t^4.79 + 2*t^4.98 + t^5.15 + 4*t^5.31 + 2*t^5.48 + t^5.51 + t^5.64 + 3*t^5.84 - t^4.54/y - t^4.54*y detail