Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
4472 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}M_{6}$ + ${ }M_{7}q_{1}\tilde{q}_{1}$ + ${ }M_{8}q_{1}\tilde{q}_{2}$ 0.6271 0.8133 0.771 [M:[0.9796, 1.0612, 1.0204, 0.9388, 0.7449, 1.2551, 0.7857, 0.7857], q:[0.7449, 0.2755], qb:[0.4694, 0.4694], phi:[0.5102]] [M:[[4], [-12], [-4], [12], [1], [-1], [-7], [-7]], q:[[1], [-5]], qb:[[6], [6]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{7}$, ${ }M_{8}$, ${ }M_{4}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{6}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{7}q_{2}\tilde{q}_{1}$, ${ }M_{8}q_{2}\tilde{q}_{1}$, ${ }M_{7}q_{2}\tilde{q}_{2}$, ${ }M_{8}q_{2}\tilde{q}_{2}$, ${ }M_{7}^{2}$, ${ }M_{7}M_{8}$, ${ }M_{8}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{4}M_{7}$, ${ }M_{4}M_{8}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}M_{7}$, ${ }M_{3}M_{8}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{7}\phi_{1}q_{2}^{2}$, ${ }M_{8}\phi_{1}q_{2}^{2}$, ${ }M_{4}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}\phi_{1}^{2}$ ${}M_{4}\phi_{1}q_{2}^{2}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ -1 2*t^2.235 + 2*t^2.357 + t^2.816 + 2*t^3.061 + t^3.184 + 2*t^3.765 + 3*t^4.347 + 3*t^4.469 + 4*t^4.592 + 3*t^4.714 + 2*t^5.051 + 2*t^5.174 + 4*t^5.296 + 4*t^5.418 + 2*t^5.541 + t^5.633 + t^5.878 - t^6. + 5*t^6.122 + 2*t^6.245 + t^6.367 + 4*t^6.582 + 6*t^6.704 + 6*t^6.826 + 6*t^6.949 + 4*t^7.071 + 3*t^7.163 + 5*t^7.408 + 7*t^7.531 + 7*t^7.653 + 6*t^7.775 + 2*t^7.868 + 3*t^7.898 + 2*t^8.112 - 4*t^8.235 + t^8.449 + 8*t^8.479 + 4*t^8.602 + 6*t^8.694 + 2*t^8.724 + 5*t^8.939 - t^4.531/y - (2*t^6.888)/y + (2*t^7.469)/y + (3*t^7.592)/y + t^7.714/y + (2*t^8.051)/y + (4*t^8.174)/y + (4*t^8.296)/y + (6*t^8.418)/y + (2*t^8.541)/y + (2*t^8.878)/y - t^4.531*y - 2*t^6.888*y + 2*t^7.469*y + 3*t^7.592*y + t^7.714*y + 2*t^8.051*y + 4*t^8.174*y + 4*t^8.296*y + 6*t^8.418*y + 2*t^8.541*y + 2*t^8.878*y 2*g1*t^2.235 + (2*t^2.357)/g1^7 + g1^12*t^2.816 + (2*t^3.061)/g1^4 + t^3.184/g1^12 + (2*t^3.765)/g1 + 3*g1^10*t^4.347 + 3*g1^2*t^4.469 + (4*t^4.592)/g1^6 + (3*t^4.714)/g1^14 + 2*g1^13*t^5.051 + 2*g1^5*t^5.174 + (4*t^5.296)/g1^3 + (4*t^5.418)/g1^11 + (2*t^5.541)/g1^19 + g1^24*t^5.633 + g1^8*t^5.878 - t^6. + (5*t^6.122)/g1^8 + (2*t^6.245)/g1^16 + t^6.367/g1^24 + 4*g1^11*t^6.582 + 6*g1^3*t^6.704 + (6*t^6.826)/g1^5 + (6*t^6.949)/g1^13 + (4*t^7.071)/g1^21 + 3*g1^22*t^7.163 + 5*g1^6*t^7.408 + (7*t^7.531)/g1^2 + (7*t^7.653)/g1^10 + (6*t^7.775)/g1^18 + 2*g1^25*t^7.868 + (3*t^7.898)/g1^26 + 2*g1^9*t^8.112 - 4*g1*t^8.235 + g1^36*t^8.449 + (8*t^8.479)/g1^15 + (4*t^8.602)/g1^23 + 6*g1^20*t^8.694 + (2*t^8.724)/g1^31 + 5*g1^4*t^8.939 - t^4.531/(g1^2*y) - (2*t^6.888)/(g1^9*y) + (2*g1^2*t^7.469)/y + (3*t^7.592)/(g1^6*y) + t^7.714/(g1^14*y) + (2*g1^13*t^8.051)/y + (4*g1^5*t^8.174)/y + (4*t^8.296)/(g1^3*y) + (6*t^8.418)/(g1^11*y) + (2*t^8.541)/(g1^19*y) + (2*g1^8*t^8.878)/y - (t^4.531*y)/g1^2 - (2*t^6.888*y)/g1^9 + 2*g1^2*t^7.469*y + (3*t^7.592*y)/g1^6 + (t^7.714*y)/g1^14 + 2*g1^13*t^8.051*y + 4*g1^5*t^8.174*y + (4*t^8.296*y)/g1^3 + (6*t^8.418*y)/g1^11 + (2*t^8.541*y)/g1^19 + 2*g1^8*t^8.878*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2428 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}M_{6}$ + ${ }M_{7}q_{1}\tilde{q}_{1}$ 0.6101 0.7833 0.7789 [M:[0.9726, 1.0823, 1.0274, 0.9177, 0.7431, 1.2569, 0.798], q:[0.7431, 0.2843], qb:[0.4589, 0.4589], phi:[0.5137]] 2*t^2.229 + t^2.394 + t^2.753 + 2*t^3.082 + t^3.247 + t^3.606 + 2*t^3.771 + 3*t^4.294 + 3*t^4.459 + 2*t^4.623 + t^4.788 + 2*t^4.983 + t^5.147 + 4*t^5.312 + 2*t^5.476 + t^5.506 + t^5.641 + 3*t^5.835 - t^4.541/y - t^4.541*y detail