Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2823 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5q_1\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ 0.6271 0.8133 0.771 [X:[], M:[0.9796, 1.0612, 1.0204, 0.9388, 0.7857, 0.7857], q:[0.7449, 0.2755], qb:[0.4694, 0.4694], phi:[0.5102]] [X:[], M:[[4, 4], [-12, -12], [-4, -4], [12, 12], [-13, -1], [-1, -13]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ M_6$, $ M_5$, $ M_4$, $ M_3$, $ \phi_1^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_1^2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_6q_2\tilde{q}_1$, $ \phi_1q_1q_2$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ M_6^2$, $ M_5M_6$, $ M_5^2$, $ M_4q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_4M_6$, $ \phi_1q_1\tilde{q}_1$, $ M_4M_5$, $ \phi_1q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_3M_6$, $ M_6\phi_1^2$, $ \phi_1q_2^3\tilde{q}_1$, $ M_3M_5$, $ M_5\phi_1^2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_6\phi_1q_2^2$, $ M_5\phi_1q_2^2$, $ M_4^2$, $ M_3M_4$, $ M_4\phi_1^2$ $M_4\phi_1q_2^2$, $ \phi_1q_2^2\tilde{q}_1^2$, $ \phi_1q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_2^2$ -1 2*t^2.23 + 2*t^2.36 + t^2.82 + 2*t^3.06 + t^3.18 + 2*t^3.77 + 3*t^4.35 + 3*t^4.47 + 4*t^4.59 + 3*t^4.71 + 2*t^5.05 + 2*t^5.17 + 4*t^5.3 + 4*t^5.42 + 2*t^5.54 + t^5.63 + t^5.88 - t^6. + 5*t^6.12 + 2*t^6.24 + t^6.37 + 4*t^6.58 + 6*t^6.7 + 6*t^6.83 + 6*t^6.95 + 4*t^7.07 + 3*t^7.16 + 5*t^7.41 + 7*t^7.53 + 7*t^7.65 + 6*t^7.78 + 2*t^7.87 + 3*t^7.9 + 2*t^8.11 - 4*t^8.23 + t^8.45 + 8*t^8.48 + 4*t^8.6 + 6*t^8.69 + 2*t^8.72 + 5*t^8.94 - t^4.53/y - (2*t^6.89)/y + (2*t^7.47)/y + (3*t^7.59)/y + t^7.71/y + (2*t^8.05)/y + (4*t^8.17)/y + (4*t^8.3)/y + (6*t^8.42)/y + (2*t^8.54)/y + (2*t^8.88)/y - t^4.53*y - 2*t^6.89*y + 2*t^7.47*y + 3*t^7.59*y + t^7.71*y + 2*t^8.05*y + 4*t^8.17*y + 4*t^8.3*y + 6*t^8.42*y + 2*t^8.54*y + 2*t^8.88*y (g1^7*t^2.23)/g2^5 + (g2^7*t^2.23)/g1^5 + t^2.36/(g1*g2^13) + t^2.36/(g1^13*g2) + g1^12*g2^12*t^2.82 + (2*t^3.06)/(g1^4*g2^4) + t^3.18/(g1^12*g2^12) + (g1^5*t^3.77)/g2^7 + (g2^5*t^3.77)/g1^7 + (g1^22*t^4.35)/g2^2 + g1^10*g2^10*t^4.35 + (g2^22*t^4.35)/g1^2 + (g1^14*t^4.47)/g2^10 + g1^2*g2^2*t^4.47 + (g2^14*t^4.47)/g1^10 + (g1^6*t^4.59)/g2^18 + (2*t^4.59)/(g1^6*g2^6) + (g2^6*t^4.59)/g1^18 + t^4.71/(g1^2*g2^26) + t^4.71/(g1^14*g2^14) + t^4.71/(g1^26*g2^2) + g1^19*g2^7*t^5.05 + g1^7*g2^19*t^5.05 + (g1^11*t^5.17)/g2 + (g2^11*t^5.17)/g1 + (2*g1^3*t^5.3)/g2^9 + (2*g2^3*t^5.3)/g1^9 + (2*t^5.42)/(g1^5*g2^17) + (2*t^5.42)/(g1^17*g2^5) + t^5.54/(g1^13*g2^25) + t^5.54/(g1^25*g2^13) + g1^24*g2^24*t^5.63 + g1^8*g2^8*t^5.88 - t^6. + (g1^4*t^6.12)/g2^20 + (3*t^6.12)/(g1^8*g2^8) + (g2^4*t^6.12)/g1^20 + (2*t^6.24)/(g1^16*g2^16) + t^6.37/(g1^24*g2^24) + (g1^29*t^6.58)/g2^7 + g1^17*g2^5*t^6.58 + g1^5*g2^17*t^6.58 + (g2^29*t^6.58)/g1^7 + (2*g1^21*t^6.7)/g2^15 + (g1^9*t^6.7)/g2^3 + (g2^9*t^6.7)/g1^3 + (2*g2^21*t^6.7)/g1^15 + (g1^13*t^6.83)/g2^23 + (2*g1*t^6.83)/g2^11 + (2*g2*t^6.83)/g1^11 + (g2^13*t^6.83)/g1^23 + (g1^5*t^6.95)/g2^31 + (2*t^6.95)/(g1^7*g2^19) + (2*t^6.95)/(g1^19*g2^7) + (g2^5*t^6.95)/g1^31 + t^7.07/(g1^3*g2^39) + t^7.07/(g1^15*g2^27) + t^7.07/(g1^27*g2^15) + t^7.07/(g1^39*g2^3) + g1^34*g2^10*t^7.16 + g1^22*g2^22*t^7.16 + g1^10*g2^34*t^7.16 + (2*g1^18*t^7.41)/g2^6 + g1^6*g2^6*t^7.41 + (2*g2^18*t^7.41)/g1^6 + (3*g1^10*t^7.53)/g2^14 + t^7.53/(g1^2*g2^2) + (3*g2^10*t^7.53)/g1^14 + (2*g1^2*t^7.65)/g2^22 + (3*t^7.65)/(g1^10*g2^10) + (2*g2^2*t^7.65)/g1^22 + (2*t^7.78)/(g1^6*g2^30) + (2*t^7.78)/(g1^18*g2^18) + (2*t^7.78)/(g1^30*g2^6) + g1^31*g2^19*t^7.87 + g1^19*g2^31*t^7.87 + t^7.9/(g1^14*g2^38) + t^7.9/(g1^26*g2^26) + t^7.9/(g1^38*g2^14) + (g1^27*t^8.11)/g2^9 + (g2^27*t^8.11)/g1^9 - (2*g1^7*t^8.23)/g2^5 - (2*g2^7*t^8.23)/g1^5 + g1^36*g2^36*t^8.45 + (g1^3*t^8.48)/g2^33 + (3*t^8.48)/(g1^9*g2^21) + (3*t^8.48)/(g1^21*g2^9) + (g2^3*t^8.48)/g1^33 + (2*t^8.6)/(g1^17*g2^29) + (2*t^8.6)/(g1^29*g2^17) + (g1^44*t^8.69)/g2^4 + g1^32*g2^8*t^8.69 + 2*g1^20*g2^20*t^8.69 + g1^8*g2^32*t^8.69 + (g2^44*t^8.69)/g1^4 + t^8.72/(g1^25*g2^37) + t^8.72/(g1^37*g2^25) + (g1^36*t^8.82)/g2^12 - 2*g1^12*g2^12*t^8.82 + (g2^36*t^8.82)/g1^12 + (2*g1^28*t^8.94)/g2^20 + (g1^16*t^8.94)/g2^8 - g1^4*g2^4*t^8.94 + (g2^16*t^8.94)/g1^8 + (2*g2^28*t^8.94)/g1^20 - t^4.53/(g1^2*g2^2*y) - t^6.89/(g1^3*g2^15*y) - t^6.89/(g1^15*g2^3*y) + (2*g1^2*g2^2*t^7.47)/y + (g1^6*t^7.59)/(g2^18*y) + t^7.59/(g1^6*g2^6*y) + (g2^6*t^7.59)/(g1^18*y) + t^7.71/(g1^14*g2^14*y) + (g1^19*g2^7*t^8.05)/y + (g1^7*g2^19*t^8.05)/y + (2*g1^11*t^8.17)/(g2*y) + (2*g2^11*t^8.17)/(g1*y) + (2*g1^3*t^8.3)/(g2^9*y) + (2*g2^3*t^8.3)/(g1^9*y) + (3*t^8.42)/(g1^5*g2^17*y) + (3*t^8.42)/(g1^17*g2^5*y) + t^8.54/(g1^13*g2^25*y) + t^8.54/(g1^25*g2^13*y) + (2*g1^8*g2^8*t^8.88)/y - (t^4.53*y)/(g1^2*g2^2) - (t^6.89*y)/(g1^3*g2^15) - (t^6.89*y)/(g1^15*g2^3) + 2*g1^2*g2^2*t^7.47*y + (g1^6*t^7.59*y)/g2^18 + (t^7.59*y)/(g1^6*g2^6) + (g2^6*t^7.59*y)/g1^18 + (t^7.71*y)/(g1^14*g2^14) + g1^19*g2^7*t^8.05*y + g1^7*g2^19*t^8.05*y + (2*g1^11*t^8.17*y)/g2 + (2*g2^11*t^8.17*y)/g1 + (2*g1^3*t^8.3*y)/g2^9 + (2*g2^3*t^8.3*y)/g1^9 + (3*t^8.42*y)/(g1^5*g2^17) + (3*t^8.42*y)/(g1^17*g2^5) + (t^8.54*y)/(g1^13*g2^25) + (t^8.54*y)/(g1^25*g2^13) + 2*g1^8*g2^8*t^8.88*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3353 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5q_1\tilde{q}_1$ + $ M_6q_1\tilde{q}_2$ + $ M_7\phi_1q_2^2$ 0.6351 0.8273 0.7677 [X:[], M:[0.9627, 1.112, 1.0373, 0.888, 0.8153, 0.8153, 0.888], q:[0.7407, 0.2966], qb:[0.444, 0.444], phi:[0.5187]] 2*t^2.22 + 2*t^2.45 + 2*t^2.66 + 2*t^3.11 + 2*t^3.78 + 3*t^4.22 + 3*t^4.44 + 4*t^4.67 + 7*t^4.89 + 4*t^5.11 + 7*t^5.33 + 2*t^5.56 + 3*t^5.78 - 2*t^6. - t^4.56/y - t^4.56*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1808 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5q_1\tilde{q}_1$ 0.6106 0.7847 0.7781 [X:[], M:[0.972, 1.0841, 1.028, 0.9159, 0.7842], q:[0.743, 0.285], qb:[0.4729, 0.4431], phi:[0.514]] t^2.18 + t^2.27 + t^2.35 + t^2.75 + 2*t^3.08 + t^3.25 + t^3.56 + t^3.73 + t^3.82 + t^4.2 + t^4.29 + t^4.37 + t^4.38 + t^4.46 + t^4.54 + t^4.55 + t^4.63 + t^4.7 + t^4.93 + t^5.02 + t^5.1 + 2*t^5.27 + 2*t^5.36 + 2*t^5.44 + t^5.5 + t^5.6 + t^5.74 + 2*t^5.83 + t^5.91 - t^6. - t^4.54/y - t^4.54*y detail