Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
4037 SU2adj1nf2 $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2q_2\tilde{q}_2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_2M_5$ + $ M_6q_1\tilde{q}_2$ + $ M_7q_1q_2$ + $ M_8\phi_1q_2^2$ + $ M_9\phi_1\tilde{q}_2^2$ 0.758 0.985 0.7695 [X:[], M:[0.9746, 1.1224, 0.9746, 0.6836, 0.8776, 0.7806, 0.7806, 0.6836, 0.6836], q:[0.7806, 0.4388], qb:[0.5866, 0.4388], phi:[0.4388]] [X:[], M:[[-7, 1], [4, 0], [-11, -1], [6, 0], [-4, 0], [-1, -1], [3, 1], [10, 2], [2, -2]], q:[[1, 0], [-4, -1]], qb:[[11, 0], [0, 1]], phi:[[-2, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_4$, $ M_9$, $ M_8$, $ M_6$, $ M_7$, $ M_5$, $ \phi_1^2$, $ M_3$, $ M_1$, $ M_4^2$, $ M_8M_9$, $ q_1\tilde{q}_1$, $ M_9^2$, $ M_4M_9$, $ M_4M_8$, $ M_8^2$, $ M_6M_9$, $ M_4M_6$, $ M_7M_9$, $ \phi_1q_2\tilde{q}_1$, $ M_4M_7$, $ M_6M_8$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_7M_8$, $ M_4M_5$, $ M_6M_7$, $ M_4\phi_1^2$, $ M_6^2$, $ M_5M_9$, $ M_9\phi_1^2$, $ M_7^2$, $ M_5M_8$, $ M_8\phi_1^2$, $ \phi_1\tilde{q}_1^2$, $ M_3M_9$, $ M_3M_4$, $ M_5M_6$, $ M_1M_9$, $ M_6\phi_1^2$, $ M_1M_4$, $ M_5M_7$, $ M_3M_8$, $ M_7\phi_1^2$, $ M_1M_8$, $ M_5^2$, $ M_1M_6$, $ M_3M_7$, $ M_5\phi_1^2$, $ \phi_1^4$, $ M_3M_6$, $ M_1M_7$, $ M_3M_5$, $ M_3\phi_1^2$, $ M_1M_5$, $ M_1\phi_1^2$, $ M_1M_3$, $ M_3^2$, $ M_1^2$ . -5 3*t^2.05 + 2*t^2.34 + 2*t^2.63 + 2*t^2.92 + 7*t^4.1 + 8*t^4.39 + 9*t^4.68 + t^4.84 + 10*t^4.97 + 7*t^5.27 + 2*t^5.56 + 3*t^5.85 - 5*t^6. + 13*t^6.15 - 2*t^6.29 + 18*t^6.44 - t^6.58 + 25*t^6.73 - 2*t^6.87 + 3*t^6.89 + 30*t^7.03 + 2*t^7.18 + 24*t^7.32 + t^7.47 + 16*t^7.61 - 2*t^7.76 + 16*t^7.9 - 19*t^8.05 + 8*t^8.19 + 21*t^8.2 - 20*t^8.34 + 3*t^8.48 + 32*t^8.49 - 17*t^8.63 + 4*t^8.77 + 48*t^8.79 - 20*t^8.92 + 7*t^8.94 - t^4.32/y - (3*t^6.37)/y - (2*t^6.66)/y - t^6.95/y + (3*t^7.1)/y - (2*t^7.24)/y + (8*t^7.39)/y + (8*t^7.68)/y + (12*t^7.97)/y + (8*t^8.27)/y - (6*t^8.42)/y + (4*t^8.56)/y - (6*t^8.71)/y + t^8.85/y - t^4.32*y - 3*t^6.37*y - 2*t^6.66*y - t^6.95*y + 3*t^7.1*y - 2*t^7.24*y + 8*t^7.39*y + 8*t^7.68*y + 12*t^7.97*y + 8*t^8.27*y - 6*t^8.42*y + 4*t^8.56*y - 6*t^8.71*y + t^8.85*y g1^6*t^2.05 + (g1^2*t^2.05)/g2^2 + g1^10*g2^2*t^2.05 + t^2.34/(g1*g2) + g1^3*g2*t^2.34 + (2*t^2.63)/g1^4 + t^2.92/(g1^11*g2) + (g2*t^2.92)/g1^7 + 3*g1^12*t^4.1 + (g1^4*t^4.1)/g2^4 + (g1^8*t^4.1)/g2^2 + g1^16*g2^2*t^4.1 + g1^20*g2^4*t^4.1 + (g1*t^4.39)/g2^3 + (3*g1^5*t^4.39)/g2 + 3*g1^9*g2*t^4.39 + g1^13*g2^3*t^4.39 + 3*g1^2*t^4.68 + (3*t^4.68)/(g1^2*g2^2) + 3*g1^6*g2^2*t^4.68 + g1^20*t^4.84 + t^4.97/(g1^9*g2^3) + (4*t^4.97)/(g1^5*g2) + (4*g2*t^4.97)/g1 + g1^3*g2^3*t^4.97 + (5*t^5.27)/g1^8 + t^5.27/(g1^12*g2^2) + (g2^2*t^5.27)/g1^4 + t^5.56/(g1^15*g2) + (g2*t^5.56)/g1^11 + t^5.85/g1^18 + t^5.85/(g1^22*g2^2) + (g2^2*t^5.85)/g1^14 - 3*t^6. - t^6./(g1^4*g2^2) - g1^4*g2^2*t^6. + 3*g1^18*t^6.15 + (g1^6*t^6.15)/g2^6 + (g1^10*t^6.15)/g2^4 + (3*g1^14*t^6.15)/g2^2 + 3*g1^22*g2^2*t^6.15 + g1^26*g2^4*t^6.15 + g1^30*g2^6*t^6.15 - t^6.29/(g1^7*g2) - (g2*t^6.29)/g1^3 + (g1^3*t^6.44)/g2^5 + (3*g1^7*t^6.44)/g2^3 + (5*g1^11*t^6.44)/g2 + 5*g1^15*g2*t^6.44 + 3*g1^19*g2^3*t^6.44 + g1^23*g2^5*t^6.44 - t^6.58/g1^10 + 9*g1^8*t^6.73 + (3*t^6.73)/g2^4 + (5*g1^4*t^6.73)/g2^2 + 5*g1^12*g2^2*t^6.73 + 3*g1^16*g2^4*t^6.73 - t^6.87/(g1^17*g2) - (g2*t^6.87)/g1^13 + g1^26*t^6.89 + (g1^22*t^6.89)/g2^2 + g1^30*g2^2*t^6.89 + t^7.03/(g1^7*g2^5) + (5*t^7.03)/(g1^3*g2^3) + (9*g1*t^7.03)/g2 + 9*g1^5*g2*t^7.03 + 5*g1^9*g2^3*t^7.03 + g1^13*g2^5*t^7.03 + (g1^19*t^7.18)/g2 + g1^23*g2*t^7.18 + (8*t^7.32)/g1^2 + t^7.32/(g1^10*g2^4) + (7*t^7.32)/(g1^6*g2^2) + 7*g1^2*g2^2*t^7.32 + g1^6*g2^4*t^7.32 + g1^16*t^7.47 + (2*t^7.61)/(g1^13*g2^3) + (6*t^7.61)/(g1^9*g2) + (6*g2*t^7.61)/g1^5 + (2*g2^3*t^7.61)/g1 - (g1^9*t^7.76)/g2 - g1^13*g2*t^7.76 + (8*t^7.9)/g1^12 + t^7.9/(g1^20*g2^4) + (3*t^7.9)/(g1^16*g2^2) + (3*g2^2*t^7.9)/g1^8 + (g2^4*t^7.9)/g1^4 - 7*g1^6*t^8.05 - t^8.05/(g1^2*g2^4) - (5*g1^2*t^8.05)/g2^2 - 5*g1^10*g2^2*t^8.05 - g1^14*g2^4*t^8.05 + t^8.19/(g1^23*g2^3) + (3*t^8.19)/(g1^19*g2) + (3*g2*t^8.19)/g1^15 + (g2^3*t^8.19)/g1^11 + 5*g1^24*t^8.2 + (g1^8*t^8.2)/g2^8 + (g1^12*t^8.2)/g2^6 + (3*g1^16*t^8.2)/g2^4 + (3*g1^20*t^8.2)/g2^2 + 3*g1^28*g2^2*t^8.2 + 3*g1^32*g2^4*t^8.2 + g1^36*g2^6*t^8.2 + g1^40*g2^8*t^8.2 - (2*t^8.34)/(g1^5*g2^3) - (8*t^8.34)/(g1*g2) - 8*g1^3*g2*t^8.34 - 2*g1^7*g2^3*t^8.34 + t^8.48/g1^22 + t^8.48/(g1^26*g2^2) + (g2^2*t^8.48)/g1^18 + (g1^5*t^8.49)/g2^7 + (3*g1^9*t^8.49)/g2^5 + (5*g1^13*t^8.49)/g2^3 + (7*g1^17*t^8.49)/g2 + 7*g1^21*g2*t^8.49 + 5*g1^25*g2^3*t^8.49 + 3*g1^29*g2^5*t^8.49 + g1^33*g2^7*t^8.49 - (9*t^8.63)/g1^4 - (4*t^8.63)/(g1^8*g2^2) - 4*g2^2*t^8.63 + t^8.77/(g1^33*g2^3) + t^8.77/(g1^29*g2) + (g2*t^8.77)/g1^25 + (g2^3*t^8.77)/g1^21 + 10*g1^14*t^8.79 + (3*g1^2*t^8.79)/g2^6 + (5*g1^6*t^8.79)/g2^4 + (11*g1^10*t^8.79)/g2^2 + 11*g1^18*g2^2*t^8.79 + 5*g1^22*g2^4*t^8.79 + 3*g1^26*g2^6*t^8.79 - (2*t^8.92)/(g1^15*g2^3) - (8*t^8.92)/(g1^11*g2) - (8*g2*t^8.92)/g1^7 - (2*g2^3*t^8.92)/g1^3 + 3*g1^32*t^8.94 + (g1^24*t^8.94)/g2^4 + (g1^28*t^8.94)/g2^2 + g1^36*g2^2*t^8.94 + g1^40*g2^4*t^8.94 - t^4.32/(g1^2*y) - (g1^4*t^6.37)/y - t^6.37/(g2^2*y) - (g1^8*g2^2*t^6.37)/y - t^6.66/(g1^3*g2*y) - (g1*g2*t^6.66)/y - t^6.95/(g1^6*y) + (g1^12*t^7.1)/y + (g1^8*t^7.1)/(g2^2*y) + (g1^16*g2^2*t^7.1)/y - t^7.24/(g1^13*g2*y) - (g2*t^7.24)/(g1^9*y) + (g1*t^7.39)/(g2^3*y) + (3*g1^5*t^7.39)/(g2*y) + (3*g1^9*g2*t^7.39)/y + (g1^13*g2^3*t^7.39)/y + (4*g1^2*t^7.68)/y + (2*t^7.68)/(g1^2*g2^2*y) + (2*g1^6*g2^2*t^7.68)/y + t^7.97/(g1^9*g2^3*y) + (5*t^7.97)/(g1^5*g2*y) + (5*g2*t^7.97)/(g1*y) + (g1^3*g2^3*t^7.97)/y + (4*t^8.27)/(g1^8*y) + (2*t^8.27)/(g1^12*g2^2*y) + (2*g2^2*t^8.27)/(g1^4*y) - (2*g1^10*t^8.42)/y - (g1^2*t^8.42)/(g2^4*y) - (g1^6*t^8.42)/(g2^2*y) - (g1^14*g2^2*t^8.42)/y - (g1^18*g2^4*t^8.42)/y + (2*t^8.56)/(g1^15*g2*y) + (2*g2*t^8.56)/(g1^11*y) - t^8.71/(g1*g2^3*y) - (2*g1^3*t^8.71)/(g2*y) - (2*g1^7*g2*t^8.71)/y - (g1^11*g2^3*t^8.71)/y + t^8.85/(g1^18*y) - (t^4.32*y)/g1^2 - g1^4*t^6.37*y - (t^6.37*y)/g2^2 - g1^8*g2^2*t^6.37*y - (t^6.66*y)/(g1^3*g2) - g1*g2*t^6.66*y - (t^6.95*y)/g1^6 + g1^12*t^7.1*y + (g1^8*t^7.1*y)/g2^2 + g1^16*g2^2*t^7.1*y - (t^7.24*y)/(g1^13*g2) - (g2*t^7.24*y)/g1^9 + (g1*t^7.39*y)/g2^3 + (3*g1^5*t^7.39*y)/g2 + 3*g1^9*g2*t^7.39*y + g1^13*g2^3*t^7.39*y + 4*g1^2*t^7.68*y + (2*t^7.68*y)/(g1^2*g2^2) + 2*g1^6*g2^2*t^7.68*y + (t^7.97*y)/(g1^9*g2^3) + (5*t^7.97*y)/(g1^5*g2) + (5*g2*t^7.97*y)/g1 + g1^3*g2^3*t^7.97*y + (4*t^8.27*y)/g1^8 + (2*t^8.27*y)/(g1^12*g2^2) + (2*g2^2*t^8.27*y)/g1^4 - 2*g1^10*t^8.42*y - (g1^2*t^8.42*y)/g2^4 - (g1^6*t^8.42*y)/g2^2 - g1^14*g2^2*t^8.42*y - g1^18*g2^4*t^8.42*y + (2*t^8.56*y)/(g1^15*g2) + (2*g2*t^8.56*y)/g1^11 - (t^8.71*y)/(g1*g2^3) - (2*g1^3*t^8.71*y)/g2 - 2*g1^7*g2*t^8.71*y - g1^11*g2^3*t^8.71*y + (t^8.85*y)/g1^18


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1645 SU2adj1nf2 $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2q_2\tilde{q}_2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_2M_5$ + $ M_6q_1\tilde{q}_2$ + $ M_7q_1q_2$ + $ M_8\phi_1q_2^2$ 0.7373 0.9448 0.7803 [X:[], M:[0.9688, 1.1236, 0.9748, 0.6855, 0.8764, 0.7839, 0.7779, 0.6794], q:[0.7809, 0.4412], qb:[0.59, 0.4351], phi:[0.4382]] t^2.04 + t^2.06 + t^2.33 + t^2.35 + 2*t^2.63 + t^2.91 + t^2.92 + t^3.93 + t^4.08 + t^4.09 + 2*t^4.11 + t^4.37 + 3*t^4.39 + 2*t^4.41 + 3*t^4.67 + 3*t^4.69 + t^4.7 + t^4.85 + t^4.94 + 4*t^4.96 + 3*t^4.98 + t^5.24 + 5*t^5.26 + t^5.28 + t^5.54 + t^5.55 + t^5.81 + t^5.83 + t^5.85 + t^5.96 - 3*t^6. - t^4.31/y - t^4.31*y detail