Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1645 SU2adj1nf2 $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2q_2\tilde{q}_2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_2M_5$ + $ M_6q_1\tilde{q}_2$ + $ M_7q_1q_2$ + $ M_8\phi_1q_2^2$ 0.7373 0.9448 0.7803 [X:[], M:[0.9688, 1.1236, 0.9748, 0.6855, 0.8764, 0.7839, 0.7779, 0.6794], q:[0.7809, 0.4412], qb:[0.59, 0.4351], phi:[0.4382]] [X:[], M:[[-7, 1], [4, 0], [-11, -1], [6, 0], [-4, 0], [-1, -1], [3, 1], [10, 2]], q:[[1, 0], [-4, -1]], qb:[[11, 0], [0, 1]], phi:[[-2, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_8$, $ M_4$, $ M_7$, $ M_6$, $ M_5$, $ \phi_1^2$, $ M_1$, $ M_3$, $ \phi_1\tilde{q}_2^2$, $ M_8^2$, $ M_4M_8$, $ M_4^2$, $ q_1\tilde{q}_1$, $ M_7M_8$, $ M_4M_7$, $ M_6M_8$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_4M_6$, $ \phi_1q_2\tilde{q}_1$, $ M_7^2$, $ M_5M_8$, $ M_8\phi_1^2$, $ M_4M_5$, $ M_6M_7$, $ M_4\phi_1^2$, $ M_6^2$, $ \phi_1\tilde{q}_1^2$, $ M_1M_8$, $ M_1M_4$, $ M_5M_7$, $ M_3M_8$, $ M_7\phi_1^2$, $ M_3M_4$, $ M_5M_6$, $ M_6\phi_1^2$, $ M_1M_7$, $ M_5^2$, $ M_1M_6$, $ M_3M_7$, $ M_5\phi_1^2$, $ \phi_1^4$, $ M_3M_6$, $ M_1M_5$, $ M_1\phi_1^2$, $ M_3M_5$, $ M_3\phi_1^2$, $ M_1^2$, $ M_1M_3$, $ M_3^2$, $ M_8\phi_1\tilde{q}_2^2$ . -3 t^2.04 + t^2.06 + t^2.33 + t^2.35 + 2*t^2.63 + t^2.91 + t^2.92 + t^3.93 + t^4.08 + t^4.09 + 2*t^4.11 + t^4.37 + 3*t^4.39 + 2*t^4.41 + 3*t^4.67 + 3*t^4.69 + t^4.7 + t^4.85 + t^4.94 + 4*t^4.96 + 3*t^4.98 + t^5.24 + 5*t^5.26 + t^5.28 + t^5.54 + t^5.55 + t^5.81 + t^5.83 + t^5.85 + t^5.96 - 3*t^6. - t^6.02 + t^6.11 + t^6.13 + 2*t^6.15 + 2*t^6.17 + t^6.26 - t^6.3 + t^6.41 + 3*t^6.43 + 4*t^6.45 + 2*t^6.46 + 2*t^6.55 - t^6.57 + 3*t^6.71 + 5*t^6.72 + 6*t^6.74 + 2*t^6.76 + t^6.83 - t^6.87 + t^6.89 + t^6.91 + t^6.98 + 5*t^7. + 8*t^7.02 + 5*t^7.04 + t^7.06 + t^7.19 + t^7.21 + t^7.28 + 7*t^7.3 + 7*t^7.31 + 2*t^7.33 + t^7.48 + 2*t^7.57 + 6*t^7.59 + 5*t^7.61 + t^7.63 - t^7.76 - t^7.78 + 2*t^7.85 + 3*t^7.87 + 7*t^7.89 + 2*t^7.91 + t^8. - 3*t^8.04 - 6*t^8.06 - 2*t^8.07 + 2*t^8.15 + 3*t^8.16 + t^8.17 + 3*t^8.18 + 2*t^8.19 + t^8.2 + 2*t^8.21 + 2*t^8.23 + t^8.3 + t^8.32 - 6*t^8.33 - 7*t^8.35 - t^8.37 + t^8.44 + t^8.45 + t^8.46 + 3*t^8.47 + 5*t^8.48 + 4*t^8.5 + 2*t^8.52 + 3*t^8.59 - t^8.61 - 8*t^8.63 - 3*t^8.65 + t^8.72 + 4*t^8.74 + 6*t^8.76 + t^8.77 + 9*t^8.78 + 5*t^8.8 + 2*t^8.82 + t^8.87 + 2*t^8.89 - 5*t^8.91 - 7*t^8.92 + t^8.93 - t^8.94 + t^8.95 + 2*t^8.97 - t^4.31/y - t^6.35/y - t^6.37/y - t^6.65/y - t^6.67/y - t^6.94/y + t^7.09/y - t^7.22/y - t^7.24/y + t^7.37/y + (3*t^7.39)/y + (2*t^7.41)/y + (2*t^7.67)/y + (4*t^7.69)/y + t^7.94/y + (5*t^7.96)/y + (4*t^7.98)/y + t^8.24/y + (4*t^8.26)/y + (2*t^8.28)/y - t^8.39/y - t^8.41/y - t^8.43/y + (2*t^8.54)/y + (2*t^8.55)/y - t^8.69/y - (2*t^8.7)/y - t^8.72/y + t^8.83/y + t^8.96/y - t^8.98/y - t^4.31*y - t^6.35*y - t^6.37*y - t^6.65*y - t^6.67*y - t^6.94*y + t^7.09*y - t^7.22*y - t^7.24*y + t^7.37*y + 3*t^7.39*y + 2*t^7.41*y + 2*t^7.67*y + 4*t^7.69*y + t^7.94*y + 5*t^7.96*y + 4*t^7.98*y + t^8.24*y + 4*t^8.26*y + 2*t^8.28*y - t^8.39*y - t^8.41*y - t^8.43*y + 2*t^8.54*y + 2*t^8.55*y - t^8.69*y - 2*t^8.7*y - t^8.72*y + t^8.83*y + t^8.96*y - t^8.98*y g1^10*g2^2*t^2.04 + g1^6*t^2.06 + g1^3*g2*t^2.33 + t^2.35/(g1*g2) + (2*t^2.63)/g1^4 + (g2*t^2.91)/g1^7 + t^2.92/(g1^11*g2) + (g2^2*t^3.93)/g1^2 + g1^20*g2^4*t^4.08 + g1^16*g2^2*t^4.09 + 2*g1^12*t^4.11 + g1^13*g2^3*t^4.37 + 3*g1^9*g2*t^4.39 + (2*g1^5*t^4.41)/g2 + 3*g1^6*g2^2*t^4.67 + 3*g1^2*t^4.69 + t^4.7/(g1^2*g2^2) + g1^20*t^4.85 + g1^3*g2^3*t^4.94 + (4*g2*t^4.96)/g1 + (3*t^4.98)/(g1^5*g2) + (g2^2*t^5.24)/g1^4 + (5*t^5.26)/g1^8 + t^5.28/(g1^12*g2^2) + (g2*t^5.54)/g1^11 + t^5.55/(g1^15*g2) + (g2^2*t^5.81)/g1^14 + t^5.83/g1^18 + t^5.85/(g1^22*g2^2) + g1^8*g2^4*t^5.96 - 3*t^6. - t^6.02/(g1^4*g2^2) + g1^30*g2^6*t^6.11 + g1^26*g2^4*t^6.13 + 2*g1^22*g2^2*t^6.15 + 2*g1^18*t^6.17 + g1*g2^3*t^6.26 - t^6.3/(g1^7*g2) + g1^23*g2^5*t^6.41 + 3*g1^19*g2^3*t^6.43 + 4*g1^15*g2*t^6.45 + (2*g1^11*t^6.46)/g2 + (2*g2^2*t^6.55)/g1^6 - t^6.57/g1^10 + 3*g1^16*g2^4*t^6.71 + 5*g1^12*g2^2*t^6.72 + 6*g1^8*t^6.74 + (2*g1^4*t^6.76)/g2^2 + (g2^3*t^6.83)/g1^9 - t^6.87/(g1^17*g2) + g1^30*g2^2*t^6.89 + g1^26*t^6.91 + g1^13*g2^5*t^6.98 + 5*g1^9*g2^3*t^7. + 8*g1^5*g2*t^7.02 + (5*g1*t^7.04)/g2 + t^7.06/(g1^3*g2^3) + g1^23*g2*t^7.19 + (g1^19*t^7.21)/g2 + g1^6*g2^4*t^7.28 + 7*g1^2*g2^2*t^7.3 + (7*t^7.31)/g1^2 + (2*t^7.33)/(g1^6*g2^2) + g1^16*t^7.48 + (2*g2^3*t^7.57)/g1 + (6*g2*t^7.59)/g1^5 + (5*t^7.61)/(g1^9*g2) + t^7.63/(g1^13*g2^3) - g1^13*g2*t^7.76 - (g1^9*t^7.78)/g2 + (2*g2^4*t^7.85)/g1^4 + (3*g2^2*t^7.87)/g1^8 + (7*t^7.89)/g1^12 + (2*t^7.91)/(g1^16*g2^2) + g1^18*g2^6*t^8. - 3*g1^10*g2^2*t^8.04 - 6*g1^6*t^8.06 - (2*g1^2*t^8.07)/g2^2 + (g2^3*t^8.15)/g1^11 + g1^40*g2^8*t^8.15 + (3*g2*t^8.16)/g1^15 + g1^36*g2^6*t^8.17 + (3*t^8.18)/(g1^19*g2) + 2*g1^32*g2^4*t^8.19 + t^8.2/(g1^23*g2^3) + 2*g1^28*g2^2*t^8.21 + 2*g1^24*t^8.23 + g1^11*g2^5*t^8.3 + g1^7*g2^3*t^8.32 - 6*g1^3*g2*t^8.33 - (7*t^8.35)/(g1*g2) - t^8.37/(g1^5*g2^3) + (g2^2*t^8.44)/g1^18 + g1^33*g2^7*t^8.45 + t^8.46/g1^22 + 3*g1^29*g2^5*t^8.47 + t^8.48/(g1^26*g2^2) + 4*g1^25*g2^3*t^8.48 + 4*g1^21*g2*t^8.5 + (2*g1^17*t^8.52)/g2 + 3*g1^4*g2^4*t^8.59 - g2^2*t^8.61 - (8*t^8.63)/g1^4 - (3*t^8.65)/(g1^8*g2^2) + (g2^3*t^8.72)/g1^21 + (g2*t^8.74)/g1^25 + 3*g1^26*g2^6*t^8.74 + t^8.76/(g1^29*g2) + 5*g1^22*g2^4*t^8.76 + t^8.77/(g1^33*g2^3) + 9*g1^18*g2^2*t^8.78 + 5*g1^14*t^8.8 + (2*g1^10*t^8.82)/g2^2 + g1*g2^5*t^8.87 + (2*g2^3*t^8.89)/g1^3 - (5*g2*t^8.91)/g1^7 - (7*t^8.92)/(g1^11*g2) + g1^40*g2^4*t^8.93 - t^8.94/(g1^15*g2^3) + g1^36*g2^2*t^8.95 + 2*g1^32*t^8.97 - t^4.31/(g1^2*y) - (g1^8*g2^2*t^6.35)/y - (g1^4*t^6.37)/y - (g1*g2*t^6.65)/y - t^6.67/(g1^3*g2*y) - t^6.94/(g1^6*y) + (g1^16*g2^2*t^7.09)/y - (g2*t^7.22)/(g1^9*y) - t^7.24/(g1^13*g2*y) + (g1^13*g2^3*t^7.37)/y + (3*g1^9*g2*t^7.39)/y + (2*g1^5*t^7.41)/(g2*y) + (2*g1^6*g2^2*t^7.67)/y + (4*g1^2*t^7.69)/y + (g1^3*g2^3*t^7.94)/y + (5*g2*t^7.96)/(g1*y) + (4*t^7.98)/(g1^5*g2*y) + (g2^2*t^8.24)/(g1^4*y) + (4*t^8.26)/(g1^8*y) + (2*t^8.28)/(g1^12*g2^2*y) - (g1^18*g2^4*t^8.39)/y - (g1^14*g2^2*t^8.41)/y - (g1^10*t^8.43)/y + (2*g2*t^8.54)/(g1^11*y) + (2*t^8.55)/(g1^15*g2*y) - (g1^11*g2^3*t^8.69)/y - (2*g1^7*g2*t^8.7)/y - (g1^3*t^8.72)/(g2*y) + t^8.83/(g1^18*y) + (g1^8*g2^4*t^8.96)/y - (g1^4*g2^2*t^8.98)/y - (t^4.31*y)/g1^2 - g1^8*g2^2*t^6.35*y - g1^4*t^6.37*y - g1*g2*t^6.65*y - (t^6.67*y)/(g1^3*g2) - (t^6.94*y)/g1^6 + g1^16*g2^2*t^7.09*y - (g2*t^7.22*y)/g1^9 - (t^7.24*y)/(g1^13*g2) + g1^13*g2^3*t^7.37*y + 3*g1^9*g2*t^7.39*y + (2*g1^5*t^7.41*y)/g2 + 2*g1^6*g2^2*t^7.67*y + 4*g1^2*t^7.69*y + g1^3*g2^3*t^7.94*y + (5*g2*t^7.96*y)/g1 + (4*t^7.98*y)/(g1^5*g2) + (g2^2*t^8.24*y)/g1^4 + (4*t^8.26*y)/g1^8 + (2*t^8.28*y)/(g1^12*g2^2) - g1^18*g2^4*t^8.39*y - g1^14*g2^2*t^8.41*y - g1^10*t^8.43*y + (2*g2*t^8.54*y)/g1^11 + (2*t^8.55*y)/(g1^15*g2) - g1^11*g2^3*t^8.69*y - 2*g1^7*g2*t^8.7*y - (g1^3*t^8.72*y)/g2 + (t^8.83*y)/g1^18 + g1^8*g2^4*t^8.96*y - g1^4*g2^2*t^8.98*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
4036 $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2q_2\tilde{q}_2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_2M_5$ + $ M_6q_1\tilde{q}_2$ + $ M_7q_1q_2$ + $ M_8\phi_1q_2^2$ + $ M_7M_8$ + $ M_6X_1$ 0.6227 0.7834 0.7948 [X:[1.3793], M:[1.0898, 1.1448, 0.7587, 0.7172, 0.8552, 0.6207, 0.9517, 1.0483], q:[0.7862, 0.2621], qb:[0.6482, 0.5931], phi:[0.4276]] t^2.15 + t^2.28 + 2*t^2.57 + t^2.86 + t^3.14 + t^3.27 + t^4.01 + t^4.14 + 2*t^4.3 + t^4.43 + t^4.55 + 2*t^4.72 + 2*t^4.84 + t^5.01 + 4*t^5.13 + t^5.17 + t^5.3 + 4*t^5.42 + t^5.55 + 2*t^5.71 + t^5.83 - 2*t^6. - t^4.28/y - t^4.28*y detail
4037 $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2q_2\tilde{q}_2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_2M_5$ + $ M_6q_1\tilde{q}_2$ + $ M_7q_1q_2$ + $ M_8\phi_1q_2^2$ + $ M_9\phi_1\tilde{q}_2^2$ 0.758 0.985 0.7695 [X:[], M:[0.9746, 1.1224, 0.9746, 0.6836, 0.8776, 0.7806, 0.7806, 0.6836, 0.6836], q:[0.7806, 0.4388], qb:[0.5866, 0.4388], phi:[0.4388]] 3*t^2.05 + 2*t^2.34 + 2*t^2.63 + 2*t^2.92 + 7*t^4.1 + 8*t^4.39 + 9*t^4.68 + t^4.84 + 10*t^4.97 + 7*t^5.27 + 2*t^5.56 + 3*t^5.85 - 5*t^6. - t^4.32/y - t^4.32*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1057 SU2adj1nf2 $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2q_2\tilde{q}_2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_4\phi_1q_2\tilde{q}_2$ + $ M_2M_5$ + $ M_6q_1\tilde{q}_2$ + $ M_7q_1q_2$ 0.7165 0.904 0.7926 [X:[], M:[0.9701, 1.1244, 0.9701, 0.6866, 0.8756, 0.7811, 0.7811], q:[0.7811, 0.4378], qb:[0.5921, 0.4378], phi:[0.4378]] t^2.06 + 2*t^2.34 + 2*t^2.63 + 2*t^2.91 + 2*t^3.94 + 2*t^4.12 + 4*t^4.4 + 5*t^4.69 + t^4.87 + 6*t^4.97 + 7*t^5.25 + 2*t^5.54 + 3*t^5.82 - 3*t^6. - t^4.31/y - t^4.31*y detail