Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3635 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_1$ + $ M_5\phi_1\tilde{q}_1^2$ 0.6346 0.794 0.7993 [X:[1.6], M:[0.4, 1.2, 0.7625, 0.7625, 0.7249], q:[0.8, 0.8], qb:[0.4375, 0.3625], phi:[0.4]] [X:[[0, 0]], M:[[0, 0], [0, 0], [1, 1], [-1, 1], [0, 2]], q:[[-1, 0], [1, 0]], qb:[[0, -1], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ M_4$, $ M_3$, $ \phi_1^2$, $ \phi_1\tilde{q}_2^2$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ M_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_5^2$, $ M_4M_5$, $ M_3M_5$, $ M_3M_4$, $ M_5\phi_1^2$, $ M_4^2$, $ M_3^2$, $ M_4\phi_1^2$, $ \phi_1q_1\tilde{q}_2$, $ M_3\phi_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1^4$, $ X_1$, $ M_5\phi_1\tilde{q}_2^2$, $ M_5q_1\tilde{q}_2$, $ M_4\phi_1\tilde{q}_2^2$, $ M_5q_2\tilde{q}_2$, $ M_3\phi_1\tilde{q}_2^2$, $ M_2M_5$, $ M_3q_1\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_5\phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1^3\tilde{q}_2^2$, $ M_4q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_2M_4$, $ \phi_1^2q_1\tilde{q}_2$, $ M_4\phi_1\tilde{q}_1\tilde{q}_2$, $ M_2M_3$, $ \phi_1^2q_2\tilde{q}_2$, $ M_3\phi_1\tilde{q}_1\tilde{q}_2$ $\phi_1q_1^2$, $ \phi_1q_2^2$, $ \phi_1^3\tilde{q}_1\tilde{q}_2$ -1 t^2.17 + 2*t^2.29 + t^2.4 + t^3.37 + 2*t^3.49 + 2*t^3.6 + t^4.35 + 2*t^4.46 + 4*t^4.57 + 2*t^4.69 + 2*t^4.8 + t^5.55 + 4*t^5.66 + 6*t^5.77 + 4*t^5.89 - t^6. - 2*t^6.11 - t^6.23 + t^6.52 + 2*t^6.64 + 5*t^6.75 + 8*t^6.86 + 8*t^6.97 + 4*t^7.09 - 4*t^7.31 - 2*t^7.43 + t^7.72 + 4*t^7.84 + 9*t^7.95 + 10*t^8.06 + 5*t^8.17 - 4*t^8.29 - 5*t^8.4 - 6*t^8.51 - 2*t^8.63 + t^8.7 + 2*t^8.81 + 5*t^8.92 - t^4.2/y - t^6.37/y - (2*t^6.49)/y + (2*t^7.46)/y + (2*t^7.57)/y + (2*t^7.69)/y + (2*t^7.91)/y + t^8.03/y + (2*t^8.66)/y + (4*t^8.77)/y + (6*t^8.89)/y - t^4.2*y - t^6.37*y - 2*t^6.49*y + 2*t^7.46*y + 2*t^7.57*y + 2*t^7.69*y + 2*t^7.91*y + t^8.03*y + 2*t^8.66*y + 4*t^8.77*y + 6*t^8.89*y g2^2*t^2.17 + (g2*t^2.29)/g1 + g1*g2*t^2.29 + t^2.4 + g2^2*t^3.37 + (g2*t^3.49)/g1 + g1*g2*t^3.49 + 2*t^3.6 + g2^4*t^4.35 + (g2^3*t^4.46)/g1 + g1*g2^3*t^4.46 + 2*g2^2*t^4.57 + (g2^2*t^4.57)/g1^2 + g1^2*g2^2*t^4.57 + (g2*t^4.69)/g1 + g1*g2*t^4.69 + 2*t^4.8 + g2^4*t^5.55 + (2*g2^3*t^5.66)/g1 + 2*g1*g2^3*t^5.66 + 4*g2^2*t^5.77 + (g2^2*t^5.77)/g1^2 + g1^2*g2^2*t^5.77 + (2*g2*t^5.89)/g1 + 2*g1*g2*t^5.89 - t^6. - t^6.11/(g1*g2) - (g1*t^6.11)/g2 - t^6.23/g2^2 + g2^6*t^6.52 + (g2^5*t^6.64)/g1 + g1*g2^5*t^6.64 + 3*g2^4*t^6.75 + (g2^4*t^6.75)/g1^2 + g1^2*g2^4*t^6.75 + (g2^3*t^6.86)/g1^3 + (3*g2^3*t^6.86)/g1 + 3*g1*g2^3*t^6.86 + g1^3*g2^3*t^6.86 + 4*g2^2*t^6.97 + (2*g2^2*t^6.97)/g1^2 + 2*g1^2*g2^2*t^6.97 + (2*g2*t^7.09)/g1 + 2*g1*g2*t^7.09 - (2*t^7.31)/(g1*g2) - (2*g1*t^7.31)/g2 - (2*t^7.43)/g2^2 + g2^6*t^7.72 + (2*g2^5*t^7.84)/g1 + 2*g1*g2^5*t^7.84 + 5*g2^4*t^7.95 + (2*g2^4*t^7.95)/g1^2 + 2*g1^2*g2^4*t^7.95 + (g2^3*t^8.06)/g1^3 + (4*g2^3*t^8.06)/g1 + 4*g1*g2^3*t^8.06 + g1^3*g2^3*t^8.06 + g2^2*t^8.17 + (2*g2^2*t^8.17)/g1^2 + 2*g1^2*g2^2*t^8.17 - (2*g2*t^8.29)/g1 - 2*g1*g2*t^8.29 - 3*t^8.4 - t^8.4/g1^2 - g1^2*t^8.4 - (3*t^8.51)/(g1*g2) - (3*g1*t^8.51)/g2 - (2*t^8.63)/g2^2 + g2^8*t^8.7 + (g2^7*t^8.81)/g1 + g1*g2^7*t^8.81 + 3*g2^6*t^8.92 + (g2^6*t^8.92)/g1^2 + g1^2*g2^6*t^8.92 - t^4.2/y - (g2^2*t^6.37)/y - (g2*t^6.49)/(g1*y) - (g1*g2*t^6.49)/y + (g2^3*t^7.46)/(g1*y) + (g1*g2^3*t^7.46)/y + (2*g2^2*t^7.57)/y + (g2*t^7.69)/(g1*y) + (g1*g2*t^7.69)/y + t^7.91/(g1*g2*y) + (g1*t^7.91)/(g2*y) + t^8.03/(g2^2*y) + (g2^3*t^8.66)/(g1*y) + (g1*g2^3*t^8.66)/y + (4*g2^2*t^8.77)/y + (3*g2*t^8.89)/(g1*y) + (3*g1*g2*t^8.89)/y - t^4.2*y - g2^2*t^6.37*y - (g2*t^6.49*y)/g1 - g1*g2*t^6.49*y + (g2^3*t^7.46*y)/g1 + g1*g2^3*t^7.46*y + 2*g2^2*t^7.57*y + (g2*t^7.69*y)/g1 + g1*g2*t^7.69*y + (t^7.91*y)/(g1*g2) + (g1*t^7.91*y)/g2 + (t^8.03*y)/g2^2 + (g2^3*t^8.66*y)/g1 + g1*g2^3*t^8.66*y + 4*g2^2*t^8.77*y + (3*g2*t^8.89*y)/g1 + 3*g1*g2*t^8.89*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3213 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_1$ 0.615 0.7557 0.8139 [X:[1.6], M:[0.4, 1.2, 0.7748, 0.7748], q:[0.8, 0.8], qb:[0.4252, 0.3748], phi:[0.4]] 2*t^2.32 + t^2.4 + t^3.45 + 2*t^3.52 + 2*t^3.6 + t^3.75 + 3*t^4.65 + 2*t^4.72 + 2*t^4.8 + 2*t^5.77 + 4*t^5.85 + 4*t^5.92 - t^6. - t^4.2/y - t^4.2*y detail