Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3213 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }\phi_{1}q_{1}q_{2}$ + ${ }M_{1}X_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ 0.615 0.7557 0.8139 [X:[1.6], M:[0.4, 1.2, 0.7748, 0.7748], q:[0.8, 0.8], qb:[0.4252, 0.3748], phi:[0.4]] [X:[[0, 0]], M:[[0, 0], [0, 0], [1, 1], [-1, 1]], q:[[-1, 0], [1, 0]], qb:[[0, -1], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}^{2}$, ${ }M_{3}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }X_{1}$, ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ ${}\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}\tilde{q}_{2}$ -1 2*t^2.324 + t^2.4 + t^3.449 + 2*t^3.524 + 2*t^3.6 + t^3.751 + 3*t^4.649 + 2*t^4.724 + 2*t^4.8 + 2*t^5.773 + 4*t^5.849 + 4*t^5.924 - t^6. + t^6.898 + 6*t^6.973 + 6*t^7.049 + 4*t^7.124 + t^7.2 - 2*t^7.276 + t^7.502 + 3*t^8.098 + 6*t^8.173 + 6*t^8.249 - 2*t^8.324 - t^8.4 - 4*t^8.476 - t^4.2/y - (2*t^6.524)/y + t^7.649/y + (2*t^7.724)/y + (2*t^7.876)/y + (2*t^8.773)/y + (2*t^8.849)/y + (6*t^8.924)/y - t^4.2*y - 2*t^6.524*y + t^7.649*y + 2*t^7.724*y + 2*t^7.876*y + 2*t^8.773*y + 2*t^8.849*y + 6*t^8.924*y (g2*t^2.324)/g1 + g1*g2*t^2.324 + t^2.4 + g2^2*t^3.449 + (g2*t^3.524)/g1 + g1*g2*t^3.524 + 2*t^3.6 + t^3.751/g2^2 + g2^2*t^4.649 + (g2^2*t^4.649)/g1^2 + g1^2*g2^2*t^4.649 + (g2*t^4.724)/g1 + g1*g2*t^4.724 + 2*t^4.8 + (g2^3*t^5.773)/g1 + g1*g2^3*t^5.773 + 2*g2^2*t^5.849 + (g2^2*t^5.849)/g1^2 + g1^2*g2^2*t^5.849 + (2*g2*t^5.924)/g1 + 2*g1*g2*t^5.924 - t^6. + g2^4*t^6.898 + (g2^3*t^6.973)/g1^3 + (2*g2^3*t^6.973)/g1 + 2*g1*g2^3*t^6.973 + g1^3*g2^3*t^6.973 + 2*g2^2*t^7.049 + (2*g2^2*t^7.049)/g1^2 + 2*g1^2*g2^2*t^7.049 + (2*g2*t^7.124)/g1 + 2*g1*g2*t^7.124 + t^7.2 - t^7.276/(g1*g2) - (g1*t^7.276)/g2 + t^7.502/g2^4 + g2^4*t^8.098 + (g2^4*t^8.098)/g1^2 + g1^2*g2^4*t^8.098 + (g2^3*t^8.173)/g1^3 + (2*g2^3*t^8.173)/g1 + 2*g1*g2^3*t^8.173 + g1^3*g2^3*t^8.173 + 2*g2^2*t^8.249 + (2*g2^2*t^8.249)/g1^2 + 2*g1^2*g2^2*t^8.249 - (g2*t^8.324)/g1 - g1*g2*t^8.324 - t^8.4 - (2*t^8.476)/(g1*g2) - (2*g1*t^8.476)/g2 - t^4.2/y - (g2*t^6.524)/(g1*y) - (g1*g2*t^6.524)/y + (g2^2*t^7.649)/y + (g2*t^7.724)/(g1*y) + (g1*g2*t^7.724)/y + t^7.876/(g1*g2*y) + (g1*t^7.876)/(g2*y) + (g2^3*t^8.773)/(g1*y) + (g1*g2^3*t^8.773)/y + (2*g2^2*t^8.849)/y + (3*g2*t^8.924)/(g1*y) + (3*g1*g2*t^8.924)/y - t^4.2*y - (g2*t^6.524*y)/g1 - g1*g2*t^6.524*y + g2^2*t^7.649*y + (g2*t^7.724*y)/g1 + g1*g2*t^7.724*y + (t^7.876*y)/(g1*g2) + (g1*t^7.876*y)/g2 + (g2^3*t^8.773*y)/g1 + g1*g2^3*t^8.773*y + 2*g2^2*t^8.849*y + (3*g2*t^8.924*y)/g1 + 3*g1*g2*t^8.924*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3635 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }\phi_{1}q_{1}q_{2}$ + ${ }M_{1}X_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ 0.6346 0.794 0.7993 [X:[1.6], M:[0.4, 1.2, 0.7625, 0.7625, 0.7249], q:[0.8, 0.8], qb:[0.4375, 0.3625], phi:[0.4]] t^2.175 + 2*t^2.287 + t^2.4 + t^3.375 + 2*t^3.487 + 2*t^3.6 + t^4.349 + 2*t^4.462 + 4*t^4.575 + 2*t^4.687 + 2*t^4.8 + t^5.549 + 4*t^5.662 + 6*t^5.775 + 4*t^5.887 - t^6. - t^4.2/y - t^4.2*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2704 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }\phi_{1}q_{1}q_{2}$ + ${ }M_{1}X_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ 0.5983 0.726 0.8241 [X:[1.6], M:[0.4, 1.2, 0.7567], q:[0.8325, 0.7675], qb:[0.4108, 0.3892], phi:[0.4]] t^2.27 + t^2.4 + t^3.47 + 2*t^3.535 + 2*t^3.6 + 2*t^3.665 + t^4.54 + t^4.67 + 2*t^4.8 + t^5.74 + 2*t^5.805 + 2*t^5.87 + 2*t^5.935 - t^6. - t^4.2/y - t^4.2*y detail