Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
351 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ | 0.6172 | 0.7998 | 0.7717 | [X:[], M:[0.9566, 1.1301, 0.8699, 0.7306], q:[0.7392, 0.3042], qb:[0.4435, 0.4264], phi:[0.5217]] | [X:[], M:[[4, 4], [-12, -12], [12, 12], [-5, 7]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_4$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ M_3$, $ M_1$, $ \phi_1^2$, $ \phi_1q_2^2$, $ q_1\tilde{q}_2$, $ q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_4^2$, $ M_4q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_4q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1^2$, $ M_3M_4$, $ M_3q_2\tilde{q}_2$, $ M_3q_2\tilde{q}_1$, $ M_1M_4$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ M_3^2$, $ M_4\phi_1^2$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_1$, $ M_1M_3$, $ M_4\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_4q_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ M_1^2$, $ M_3\phi_1^2$, $ M_4q_1\tilde{q}_1$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ q_1q_2\tilde{q}_1^2$, $ M_4\phi_1q_2\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_2^2$ | $M_3\phi_1q_2^2$ | -1 | 2*t^2.19 + t^2.24 + t^2.61 + t^2.87 + t^3.13 + t^3.39 + t^3.5 + t^3.55 + t^3.76 + t^4.12 + t^4.17 + t^4.23 + 3*t^4.38 + 2*t^4.43 + t^4.49 + 2*t^4.8 + t^4.85 + 2*t^5.06 + t^5.11 + t^5.22 + 2*t^5.32 + t^5.37 + t^5.48 + t^5.58 + 2*t^5.69 + 4*t^5.74 + t^5.79 + t^5.95 - t^6. - t^6.05 + t^6.11 + t^6.16 + 2*t^6.32 + 3*t^6.37 + 2*t^6.42 + t^6.47 + t^6.52 + 4*t^6.58 + 3*t^6.63 + t^6.68 + 2*t^6.73 + 2*t^6.78 + t^6.84 - t^6.94 + 4*t^6.99 + 3*t^7.04 + 2*t^7.1 - t^7.2 + 4*t^7.25 + t^7.3 + t^7.36 + 2*t^7.41 + t^7.46 + 3*t^7.51 - t^7.57 + t^7.62 + 3*t^7.67 + 2*t^7.72 + 2*t^7.77 + 4*t^7.88 + 5*t^7.93 + 2*t^7.98 + t^8.03 + t^8.09 + t^8.14 - 4*t^8.19 - 4*t^8.24 + t^8.25 - t^8.29 + 3*t^8.3 + 5*t^8.35 + 2*t^8.4 - t^8.5 + 3*t^8.51 + 4*t^8.56 + 2*t^8.61 + t^8.66 + 2*t^8.71 + t^8.72 + 6*t^8.77 + 3*t^8.82 - 2*t^8.87 + 2*t^8.93 + 2*t^8.97 + 3*t^8.98 - t^4.57/y - t^6.76/y + t^7.38/y + (2*t^7.43)/y + (2*t^7.8)/y + t^7.85/y + (2*t^8.06)/y + t^8.11/y + (2*t^8.32)/y + (2*t^8.37)/y + t^8.48/y + (2*t^8.58)/y + t^8.63/y + (2*t^8.69)/y + (4*t^8.74)/y + t^8.79/y + t^8.95/y - t^4.57*y - t^6.76*y + t^7.38*y + 2*t^7.43*y + 2*t^7.8*y + t^7.85*y + 2*t^8.06*y + t^8.11*y + 2*t^8.32*y + 2*t^8.37*y + t^8.48*y + 2*t^8.58*y + t^8.63*y + 2*t^8.69*y + 4*t^8.74*y + t^8.79*y + t^8.95*y | (2*g2^7*t^2.19)/g1^5 + (g1^7*t^2.24)/g2^5 + g1^12*g2^12*t^2.61 + g1^4*g2^4*t^2.87 + t^3.13/(g1^4*g2^4) + t^3.39/(g1^12*g2^12) + g1*g2^13*t^3.5 + g1^13*g2*t^3.55 + (g2^5*t^3.76)/g1^7 + (g2^22*t^4.12)/g1^2 + g1^10*g2^10*t^4.17 + (g1^22*t^4.23)/g2^2 + (3*g2^14*t^4.38)/g1^10 + 2*g1^2*g2^2*t^4.43 + (g1^14*t^4.49)/g2^10 + 2*g1^7*g2^19*t^4.8 + g1^19*g2^7*t^4.85 + (2*g2^11*t^5.06)/g1 + (g1^11*t^5.11)/g2 + g1^24*g2^24*t^5.22 + (2*g2^3*t^5.32)/g1^9 + (g1^3*t^5.37)/g2^9 + g1^16*g2^16*t^5.48 + t^5.58/(g1^17*g2^5) + (2*g2^20*t^5.69)/g1^4 + 4*g1^8*g2^8*t^5.74 + (g1^20*t^5.79)/g2^4 + (g2^12*t^5.95)/g1^12 - t^6. - (g1^12*t^6.05)/g2^12 + g1^13*g2^25*t^6.11 + g1^25*g2^13*t^6.16 + (2*g2^29*t^6.32)/g1^7 + 3*g1^5*g2^17*t^6.37 + 2*g1^17*g2^5*t^6.42 + (g1^29*t^6.47)/g2^7 + t^6.52/(g1^16*g2^16) + (4*g2^21*t^6.58)/g1^15 + (3*g2^9*t^6.63)/g1^3 + (g1^9*t^6.68)/g2^3 + (g1^21*t^6.73)/g2^15 + g1^10*g2^34*t^6.73 + t^6.78/(g1^24*g2^24) + g1^22*g2^22*t^6.78 + g1^34*g2^10*t^6.84 - (g1*t^6.94)/g2^11 + 4*g1^2*g2^26*t^6.99 + 3*g1^14*g2^14*t^7.04 + 2*g1^26*g2^2*t^7.1 - t^7.2/(g1^7*g2^19) + (4*g2^18*t^7.25)/g1^6 + g1^6*g2^6*t^7.3 + (g1^18*t^7.36)/g2^6 + 2*g1^19*g2^31*t^7.41 + g1^31*g2^19*t^7.46 + (3*g2^10*t^7.51)/g1^14 - t^7.57/(g1^2*g2^2) + (g2^35*t^7.62)/g1 + 3*g1^11*g2^23*t^7.67 + 2*g1^23*g2^11*t^7.72 + (g1^35*t^7.77)/g2 + (g2^2*t^7.77)/g1^22 - t^7.83/(g1^10*g2^10) + g1^36*g2^36*t^7.83 + (4*g2^27*t^7.88)/g1^9 + 5*g1^3*g2^15*t^7.93 + 2*g1^15*g2^3*t^7.98 + (g1^27*t^8.03)/g2^9 + g1^28*g2^28*t^8.09 + (g2^19*t^8.14)/g1^17 - (4*g2^7*t^8.19)/g1^5 - (4*g1^7*t^8.24)/g2^5 + (g2^44*t^8.25)/g1^4 - (g1^19*t^8.29)/g2^17 + 3*g1^8*g2^32*t^8.3 + 5*g1^20*g2^20*t^8.35 + 2*g1^32*g2^8*t^8.4 + (g1^44*t^8.45)/g2^4 - t^8.45/(g1^13*g2) - t^8.5/(g1*g2^13) + (3*g2^36*t^8.51)/g1^12 + 4*g2^24*t^8.56 + 2*g1^12*g2^12*t^8.61 + g1^24*t^8.66 + (g1^36*t^8.71)/g2^12 + t^8.71/(g1^21*g2^9) + g1^25*g2^37*t^8.72 + g1^37*g2^25*t^8.77 + (5*g2^28*t^8.77)/g1^20 + (3*g2^16*t^8.82)/g1^8 - 2*g1^4*g2^4*t^8.87 + 2*g1^5*g2^41*t^8.93 + (g1^28*t^8.97)/g2^20 + t^8.97/(g1^29*g2^17) + 3*g1^17*g2^29*t^8.98 - t^4.57/(g1^2*g2^2*y) - (g2^5*t^6.76)/(g1^7*y) + (g2^14*t^7.38)/(g1^10*y) + (2*g1^2*g2^2*t^7.43)/y + (2*g1^7*g2^19*t^7.8)/y + (g1^19*g2^7*t^7.85)/y + (2*g2^11*t^8.06)/(g1*y) + (g1^11*t^8.11)/(g2*y) + (2*g2^3*t^8.32)/(g1^9*y) + (2*g1^3*t^8.37)/(g2^9*y) + (g1^16*g2^16*t^8.48)/y + (2*t^8.58)/(g1^17*g2^5*y) + t^8.63/(g1^5*g2^17*y) + (2*g2^20*t^8.69)/(g1^4*y) + (4*g1^8*g2^8*t^8.74)/y + (g1^20*t^8.79)/(g2^4*y) + (g2^12*t^8.95)/(g1^12*y) - (t^4.57*y)/(g1^2*g2^2) - (g2^5*t^6.76*y)/g1^7 + (g2^14*t^7.38*y)/g1^10 + 2*g1^2*g2^2*t^7.43*y + 2*g1^7*g2^19*t^7.8*y + g1^19*g2^7*t^7.85*y + (2*g2^11*t^8.06*y)/g1 + (g1^11*t^8.11*y)/g2 + (2*g2^3*t^8.32*y)/g1^9 + (2*g1^3*t^8.37*y)/g2^9 + g1^16*g2^16*t^8.48*y + (2*t^8.58*y)/(g1^17*g2^5) + (t^8.63*y)/(g1^5*g2^17) + (2*g2^20*t^8.69*y)/g1^4 + 4*g1^8*g2^8*t^8.74*y + (g1^20*t^8.79*y)/g2^4 + (g2^12*t^8.95*y)/g1^12 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
555 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_3M_4$ | 0.5462 | 0.7009 | 0.7793 | [X:[], M:[1.049, 0.853, 1.147, 0.853], q:[0.7622, 0.1888], qb:[0.4827, 0.6643], phi:[0.4755]] | t^2.01 + 3*t^2.56 + t^2.85 + t^3.15 + t^3.44 + t^3.73 + t^3.99 + t^4.03 + t^4.28 + t^4.32 + 2*t^4.57 + 2*t^4.87 + 5*t^5.12 + t^5.16 + 4*t^5.41 + 2*t^5.71 + t^5.75 - t^4.43/y - t^4.43*y | detail | |
556 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2^2$ | 0.6052 | 0.7938 | 0.7624 | [X:[], M:[0.9204, 1.2388, 0.7612, 0.7612], q:[0.7301, 0.3495], qb:[0.3495, 0.4117], phi:[0.5398]] | t^2.1 + 3*t^2.28 + t^2.76 + 2*t^3.24 + t^3.43 + 2*t^3.72 + 2*t^3.9 + t^4.09 + t^4.19 + 3*t^4.38 + 6*t^4.57 + t^4.86 + 3*t^5.04 + 2*t^5.34 + 7*t^5.52 + 3*t^5.71 + 3*t^6. - t^4.62/y - t^4.62*y | detail | |
1786 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_4q_1\tilde{q}_2$ | 0.6129 | 0.79 | 0.7758 | [X:[], M:[0.9693, 1.092, 0.908, 0.773], q:[0.7423, 0.2884], qb:[0.4233, 0.4847], phi:[0.5153]] | t^2.13 + 2*t^2.32 + t^2.72 + t^2.91 + t^3.09 + t^3.28 + t^3.5 + t^3.68 + t^3.87 + t^4.09 + 2*t^4.27 + 3*t^4.45 + 3*t^4.64 + t^4.86 + 3*t^5.04 + 3*t^5.23 + 2*t^5.41 + t^5.45 + t^5.6 + 2*t^5.63 + 3*t^5.82 + t^6. - t^4.55/y - t^4.55*y | detail | |
559 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ | 0.6365 | 0.835 | 0.7622 | [X:[], M:[0.9558, 1.1325, 0.8675, 0.739, 0.739], q:[0.739, 0.3052], qb:[0.4338, 0.4338], phi:[0.5221]] | 4*t^2.22 + t^2.6 + t^2.87 + t^3.13 + t^3.4 + 2*t^3.52 + 3*t^4.17 + 10*t^4.43 + 4*t^4.82 + 4*t^5.08 + t^5.21 + 4*t^5.35 + t^5.47 + 2*t^5.61 + 9*t^5.74 - 4*t^6. - t^4.57/y - t^4.57*y | detail | |
1789 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5q_1\tilde{q}_1$ | 0.6335 | 0.8282 | 0.7649 | [X:[], M:[0.9646, 1.1063, 0.8937, 0.7188, 0.7897], q:[0.7411, 0.2943], qb:[0.4692, 0.4245], phi:[0.5177]] | 2*t^2.16 + t^2.29 + t^2.37 + t^2.68 + t^2.89 + t^3.11 + t^3.32 + t^3.5 + t^3.71 + t^4.1 + t^4.23 + 3*t^4.31 + t^4.37 + 2*t^4.45 + 2*t^4.53 + t^4.58 + t^4.66 + t^4.74 + 2*t^4.84 + t^4.97 + 3*t^5.05 + t^5.18 + 3*t^5.26 + t^5.36 + t^5.4 + 2*t^5.48 + t^5.57 + 2*t^5.65 + t^5.69 + 2*t^5.79 + 2*t^5.87 - t^6. - t^4.55/y - t^4.55*y | detail | |
1788 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5q_1\tilde{q}_2$ | 0.6325 | 0.8243 | 0.7672 | [X:[], M:[0.9649, 1.1054, 0.8946, 0.7471, 0.8056], q:[0.7412, 0.2939], qb:[0.4414, 0.4532], phi:[0.5176]] | t^2.21 + 2*t^2.24 + t^2.42 + t^2.68 + t^2.89 + t^3.11 + t^3.32 + t^3.55 + t^3.79 + t^4.2 + t^4.24 + t^4.27 + t^4.41 + 2*t^4.45 + 3*t^4.48 + t^4.62 + 2*t^4.66 + t^4.83 + t^4.89 + 2*t^4.93 + 2*t^5.1 + 2*t^5.14 + 2*t^5.31 + 2*t^5.35 + t^5.37 + t^5.52 + t^5.56 + t^5.58 + t^5.73 + t^5.75 + 3*t^5.79 - t^6. - t^4.55/y - t^4.55*y | detail | |
557 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ \phi_1q_2^2\tilde{q}_2^2$ | 0.617 | 0.7991 | 0.7722 | [X:[], M:[0.9565, 1.1304, 0.8696, 0.7391], q:[0.7391, 0.3043], qb:[0.4348, 0.4348], phi:[0.5217]] | 3*t^2.22 + t^2.61 + t^2.87 + t^3.13 + t^3.39 + 2*t^3.52 + t^3.78 + 3*t^4.17 + 6*t^4.43 + 3*t^4.83 + 3*t^5.09 + t^5.22 + 3*t^5.35 + t^5.48 + t^5.61 + 7*t^5.74 - t^6. - t^4.57/y - t^4.57*y | detail | |
1787 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ q_1q_2\tilde{q}_1^2$ | 0.6153 | 0.7974 | 0.7716 | [X:[], M:[0.9656, 1.1033, 0.8967, 0.707], q:[0.7414, 0.293], qb:[0.4828, 0.4139], phi:[0.5172]] | 2*t^2.12 + t^2.33 + t^2.69 + t^2.9 + t^3.1 + t^3.31 + t^3.47 + 2*t^3.67 + t^4.04 + 4*t^4.24 + 3*t^4.45 + t^4.65 + 2*t^4.81 + 3*t^5.02 + 3*t^5.22 + t^5.38 + 2*t^5.43 + 3*t^5.59 + 5*t^5.79 - t^4.55/y - t^4.55*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
218 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ | 0.5976 | 0.7632 | 0.783 | [X:[], M:[0.9572, 1.1283, 0.8717], q:[0.7393, 0.3035], qb:[0.4358, 0.4358], phi:[0.5214]] | 2*t^2.22 + t^2.62 + t^2.87 + t^3.13 + t^3.38 + 2*t^3.53 + 2*t^3.78 + 3*t^4.18 + 3*t^4.44 + 2*t^4.83 + 2*t^5.09 + t^5.23 + 2*t^5.35 + t^5.49 + 5*t^5.74 - t^4.56/y - t^4.56*y | detail |