Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1789 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ 0.6335 0.8282 0.7649 [M:[0.9646, 1.1063, 0.8937, 0.7188, 0.7897], q:[0.7411, 0.2943], qb:[0.4692, 0.4245], phi:[0.5177]] [M:[[4, 4], [-12, -12], [12, 12], [-5, 7], [-13, -1]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{5}$, ${ }M_{3}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{5}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{5}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{5}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{5}\phi_{1}q_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ ${}M_{3}\phi_{1}q_{2}^{2}$ -1 2*t^2.156 + t^2.29 + t^2.369 + t^2.681 + t^2.894 + t^3.106 + t^3.319 + t^3.497 + t^3.71 + t^4.1 + t^4.234 + 3*t^4.313 + t^4.368 + 2*t^4.447 + 2*t^4.525 + t^4.581 + t^4.66 + t^4.738 + 2*t^4.837 + t^4.971 + 3*t^5.05 + t^5.184 + 3*t^5.263 + t^5.362 + t^5.397 + 2*t^5.475 + t^5.575 + 2*t^5.653 + t^5.688 + 2*t^5.787 + 2*t^5.866 - t^6. + t^6.079 - t^6.134 + t^6.178 + 2*t^6.256 + 3*t^6.391 + t^6.425 + 5*t^6.469 + t^6.525 + 4*t^6.603 + t^6.638 + t^6.659 + 3*t^6.682 + t^6.737 + t^6.781 + 2*t^6.816 + t^6.871 + 2*t^6.894 + t^6.915 - t^6.95 + 4*t^6.994 + t^7.029 + t^7.049 + t^7.107 + 2*t^7.128 - t^7.163 + 6*t^7.206 + t^7.262 + t^7.34 + 6*t^7.419 + t^7.475 + 2*t^7.518 + t^7.597 + 4*t^7.632 + t^7.652 + 3*t^7.731 + 4*t^7.81 + 2*t^7.844 + t^7.865 + 3*t^7.944 + 3*t^8.022 + t^8.043 + t^8.057 - 2*t^8.156 + t^8.2 + 2*t^8.235 + t^8.256 - 4*t^8.29 + 3*t^8.334 - 2*t^8.369 + 3*t^8.413 - t^8.425 + t^8.448 + 3*t^8.468 - 2*t^8.503 + 5*t^8.547 + t^8.582 + t^8.602 + 7*t^8.625 + t^8.736 + 6*t^8.76 + 2*t^8.794 + 5*t^8.838 + t^8.859 - 3*t^8.894 + 2*t^8.937 + t^8.949 + 3*t^8.972 - t^4.553/y - t^6.71/y - t^6.922/y + t^7.313/y + (2*t^7.447)/y + (2*t^7.525)/y + t^7.66/y + (2*t^7.837)/y + t^7.971/y + (3*t^8.05)/y + (2*t^8.184)/y + (3*t^8.263)/y + (2*t^8.397)/y + (3*t^8.475)/y + t^8.575/y + t^8.609/y + (2*t^8.653)/y + t^8.688/y + (2*t^8.787)/y + (2*t^8.866)/y - t^4.553*y - t^6.71*y - t^6.922*y + t^7.313*y + 2*t^7.447*y + 2*t^7.525*y + t^7.66*y + 2*t^7.837*y + t^7.971*y + 3*t^8.05*y + 2*t^8.184*y + 3*t^8.263*y + 2*t^8.397*y + 3*t^8.475*y + t^8.575*y + t^8.609*y + 2*t^8.653*y + t^8.688*y + 2*t^8.787*y + 2*t^8.866*y (2*g2^7*t^2.156)/g1^5 + (g1^7*t^2.29)/g2^5 + t^2.369/(g1^13*g2) + g1^12*g2^12*t^2.681 + g1^4*g2^4*t^2.894 + t^3.106/(g1^4*g2^4) + t^3.319/(g1^12*g2^12) + g1*g2^13*t^3.497 + (g2^5*t^3.71)/g1^7 + (g2^22*t^4.1)/g1^2 + g1^10*g2^10*t^4.234 + (3*g2^14*t^4.313)/g1^10 + (g1^22*t^4.368)/g2^2 + 2*g1^2*g2^2*t^4.447 + (2*g2^6*t^4.525)/g1^18 + (g1^14*t^4.581)/g2^10 + t^4.66/(g1^6*g2^6) + t^4.738/(g1^26*g2^2) + 2*g1^7*g2^19*t^4.837 + g1^19*g2^7*t^4.971 + (3*g2^11*t^5.05)/g1 + (g1^11*t^5.184)/g2 + (3*g2^3*t^5.263)/g1^9 + g1^24*g2^24*t^5.362 + (g1^3*t^5.397)/g2^9 + (2*t^5.475)/(g1^17*g2^5) + g1^16*g2^16*t^5.575 + (2*g2^20*t^5.653)/g1^4 + t^5.688/(g1^25*g2^13) + 2*g1^8*g2^8*t^5.787 + (2*g2^12*t^5.866)/g1^12 - t^6. + (g2^4*t^6.079)/g1^20 - (g1^12*t^6.134)/g2^12 + g1^13*g2^25*t^6.178 + (2*g2^29*t^6.256)/g1^7 + 3*g1^5*g2^17*t^6.391 + t^6.425/(g1^16*g2^16) + (5*g2^21*t^6.469)/g1^15 + g1^17*g2^5*t^6.525 + (4*g2^9*t^6.603)/g1^3 + t^6.638/(g1^24*g2^24) + (g1^29*t^6.659)/g2^7 + (3*g2^13*t^6.682)/g1^23 + (g1^9*t^6.737)/g2^3 + g1^10*g2^34*t^6.781 + (2*g2*t^6.816)/g1^11 + (g1^21*t^6.871)/g2^15 + (2*g2^5*t^6.894)/g1^31 + g1^22*g2^22*t^6.915 - (g1*t^6.95)/g2^11 + 4*g1^2*g2^26*t^6.994 + t^7.029/(g1^19*g2^7) + g1^34*g2^10*t^7.049 + t^7.107/(g1^39*g2^3) + 2*g1^14*g2^14*t^7.128 - t^7.163/(g1^7*g2^19) + (6*g2^18*t^7.206)/g1^6 + g1^26*g2^2*t^7.262 + g1^6*g2^6*t^7.34 + (6*g2^10*t^7.419)/g1^14 + (g1^18*t^7.475)/g2^6 + 2*g1^19*g2^31*t^7.518 + (g2^35*t^7.597)/g1 + (4*g2^2*t^7.632)/g1^22 + g1^31*g2^19*t^7.652 + 3*g1^11*g2^23*t^7.731 + (4*g2^27*t^7.81)/g1^9 + (2*t^7.844)/(g1^30*g2^6) + g1^23*g2^11*t^7.865 + 3*g1^3*g2^15*t^7.944 + (3*g2^19*t^8.022)/g1^17 + g1^36*g2^36*t^8.043 + t^8.057/(g1^38*g2^14) - (2*g2^7*t^8.156)/g1^5 + (g2^44*t^8.2)/g1^4 + (2*g2^11*t^8.235)/g1^25 + g1^28*g2^28*t^8.256 - (4*g1^7*t^8.29)/g2^5 + 3*g1^8*g2^32*t^8.334 - (2*t^8.369)/(g1^13*g2) + (3*g2^36*t^8.413)/g1^12 - (g1^19*t^8.425)/g2^17 + (g2^3*t^8.448)/g1^33 + 3*g1^20*g2^20*t^8.468 - (2*t^8.503)/(g1*g2^13) + 5*g2^24*t^8.547 + t^8.582/(g1^21*g2^9) + g1^32*g2^8*t^8.602 + (7*g2^28*t^8.625)/g1^20 + (g1^44*t^8.736)/g2^4 + (6*g2^16*t^8.76)/g1^8 + (2*t^8.794)/(g1^29*g2^17) + (5*g2^20*t^8.838)/g1^28 + g1^25*g2^37*t^8.859 - 3*g1^4*g2^4*t^8.894 + 2*g1^5*g2^41*t^8.937 + (g1^36*t^8.949)/g2^12 + (3*g2^8*t^8.972)/g1^16 - t^4.553/(g1^2*g2^2*y) - (g2^5*t^6.71)/(g1^7*y) - t^6.922/(g1^15*g2^3*y) + (g2^14*t^7.313)/(g1^10*y) + (2*g1^2*g2^2*t^7.447)/y + (2*g2^6*t^7.525)/(g1^18*y) + t^7.66/(g1^6*g2^6*y) + (2*g1^7*g2^19*t^7.837)/y + (g1^19*g2^7*t^7.971)/y + (3*g2^11*t^8.05)/(g1*y) + (2*g1^11*t^8.184)/(g2*y) + (3*g2^3*t^8.263)/(g1^9*y) + (2*g1^3*t^8.397)/(g2^9*y) + (3*t^8.475)/(g1^17*g2^5*y) + (g1^16*g2^16*t^8.575)/y + t^8.609/(g1^5*g2^17*y) + (2*g2^20*t^8.653)/(g1^4*y) + t^8.688/(g1^25*g2^13*y) + (2*g1^8*g2^8*t^8.787)/y + (2*g2^12*t^8.866)/(g1^12*y) - (t^4.553*y)/(g1^2*g2^2) - (g2^5*t^6.71*y)/g1^7 - (t^6.922*y)/(g1^15*g2^3) + (g2^14*t^7.313*y)/g1^10 + 2*g1^2*g2^2*t^7.447*y + (2*g2^6*t^7.525*y)/g1^18 + (t^7.66*y)/(g1^6*g2^6) + 2*g1^7*g2^19*t^7.837*y + g1^19*g2^7*t^7.971*y + (3*g2^11*t^8.05*y)/g1 + (2*g1^11*t^8.184*y)/g2 + (3*g2^3*t^8.263*y)/g1^9 + (2*g1^3*t^8.397*y)/g2^9 + (3*t^8.475*y)/(g1^17*g2^5) + g1^16*g2^16*t^8.575*y + (t^8.609*y)/(g1^5*g2^17) + (2*g2^20*t^8.653*y)/g1^4 + (t^8.688*y)/(g1^25*g2^13) + 2*g1^8*g2^8*t^8.787*y + (2*g2^12*t^8.866*y)/g1^12


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2801 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ 0.6305 0.8262 0.7631 [M:[0.9451, 1.1648, 0.8352, 0.7254, 0.8352], q:[0.7363, 0.3187], qb:[0.4285, 0.4067], phi:[0.5275]] 2*t^2.176 + t^2.241 + 2*t^2.506 + t^2.835 + t^3.165 + t^3.429 + t^3.494 + t^3.759 + t^4.023 + t^4.088 + t^4.153 + 3*t^4.352 + 2*t^4.418 + t^4.483 + 4*t^4.682 + 2*t^4.747 + 5*t^5.011 + t^5.077 + 4*t^5.341 + t^5.406 + 2*t^5.605 + 4*t^5.67 + 3*t^5.935 - t^4.582/y - t^4.582*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
351 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ 0.6172 0.7998 0.7717 [M:[0.9566, 1.1301, 0.8699, 0.7306], q:[0.7392, 0.3042], qb:[0.4435, 0.4264], phi:[0.5217]] 2*t^2.192 + t^2.243 + t^2.61 + t^2.87 + t^3.13 + t^3.39 + t^3.497 + t^3.548 + t^3.757 + t^4.124 + t^4.175 + t^4.226 + 3*t^4.384 + 2*t^4.435 + t^4.486 + 2*t^4.802 + t^4.853 + 2*t^5.062 + t^5.113 + t^5.219 + 2*t^5.322 + t^5.373 + t^5.48 + t^5.582 + 2*t^5.689 + 4*t^5.74 + t^5.791 + t^5.949 - t^6. - t^4.565/y - t^4.565*y detail