Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
3395 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ \phi_1q_1\tilde{q}_2$ + $ M_5M_6$ + $ M_7\phi_1q_2\tilde{q}_1$ | 0.6888 | 0.8814 | 0.7814 | [X:[], M:[0.7416, 0.7927, 0.685, 0.8493, 1.1507, 0.8493, 0.7672], q:[0.862, 0.3964], qb:[0.4529, 0.7544], phi:[0.3836]] | [X:[], M:[[2, 10], [-6, -6], [-7, 7], [3, -3], [-3, 3], [3, -3], [-2, 2]], q:[[1, -7], [-3, -3]], qb:[[6, 0], [0, 6]], phi:[[-1, 1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_3$, $ M_1$, $ M_7$, $ \phi_1^2$, $ M_2$, $ M_4$, $ M_6$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_1^2$, $ M_3^2$, $ M_1M_3$, $ M_3M_7$, $ M_3\phi_1^2$, $ M_2M_3$, $ M_1^2$, $ M_1M_7$, $ M_1\phi_1^2$, $ M_1M_2$, $ M_3M_4$, $ M_3M_6$, $ M_7^2$, $ M_7\phi_1^2$, $ \phi_1^4$, $ \phi_1q_2\tilde{q}_2$, $ M_2M_7$, $ M_2\phi_1^2$, $ M_2^2$, $ M_1M_4$, $ M_1M_6$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_4M_7$, $ M_6M_7$, $ M_4\phi_1^2$, $ M_6\phi_1^2$, $ q_1\tilde{q}_2$, $ M_2M_4$, $ M_2M_6$, $ \phi_1q_1q_2$, $ M_4^2$, $ M_4M_6$, $ M_6^2$, $ \phi_1q_1\tilde{q}_1$, $ M_3\phi_1q_2^2$, $ M_7\phi_1q_2^2$, $ \phi_1^3q_2^2$, $ M_2\phi_1q_2^2$ | . | -3 | t^2.06 + t^2.22 + 2*t^2.3 + t^2.38 + 2*t^2.55 + t^3.53 + t^3.87 + t^4.11 + t^4.28 + 2*t^4.36 + t^4.43 + t^4.45 + 2*t^4.53 + 6*t^4.6 + 2*t^4.68 + t^4.76 + 2*t^4.77 + 5*t^4.85 + 2*t^4.93 + 3*t^5.1 + t^5.58 + t^5.83 + t^5.91 - 3*t^6. + t^6.08 + t^6.09 + 2*t^6.17 + t^6.34 + 2*t^6.41 + 2*t^6.42 + t^6.49 + t^6.5 + 2*t^6.58 + 6*t^6.66 + t^6.67 + 2*t^6.73 + 2*t^6.75 + t^6.81 + 6*t^6.83 + 10*t^6.9 + 5*t^6.98 + 2*t^7. + 3*t^7.06 + 4*t^7.07 + t^7.13 + 10*t^7.15 + 3*t^7.23 + 2*t^7.3 + t^7.32 + 5*t^7.4 + 2*t^7.47 - t^7.57 + 4*t^7.64 + t^7.74 + t^7.89 + t^7.96 - 4*t^8.06 + 2*t^8.13 + t^8.21 - 3*t^8.22 + t^8.29 - 8*t^8.3 + t^8.32 - 3*t^8.38 + 2*t^8.39 + t^8.45 + 2*t^8.47 + t^8.54 - 9*t^8.55 + t^8.56 + 4*t^8.64 + 6*t^8.71 + 2*t^8.72 + t^8.73 + t^8.79 + 2*t^8.81 + t^8.87 + 6*t^8.88 + t^8.9 + 13*t^8.96 + 2*t^8.98 - t^4.15/y - t^6.21/y - t^6.38/y - (2*t^6.45)/y - t^6.53/y - t^6.7/y + t^7.28/y + (2*t^7.36)/y + t^7.43/y + (2*t^7.53)/y + (5*t^7.6)/y + (2*t^7.68)/y + (3*t^7.77)/y + (6*t^7.85)/y + (3*t^7.93)/y + (2*t^8.1)/y - t^8.26/y - t^8.43/y - (2*t^8.51)/y - t^8.6/y - (2*t^8.68)/y - (4*t^8.75)/y - t^4.15*y - t^6.21*y - t^6.38*y - 2*t^6.45*y - t^6.53*y - t^6.7*y + t^7.28*y + 2*t^7.36*y + t^7.43*y + 2*t^7.53*y + 5*t^7.6*y + 2*t^7.68*y + 3*t^7.77*y + 6*t^7.85*y + 3*t^7.93*y + 2*t^8.1*y - t^8.26*y - t^8.43*y - 2*t^8.51*y - t^8.6*y - 2*t^8.68*y - 4*t^8.75*y | (g2^7*t^2.06)/g1^7 + g1^2*g2^10*t^2.22 + (2*g2^2*t^2.3)/g1^2 + t^2.38/(g1^6*g2^6) + (2*g1^3*t^2.55)/g2^3 + t^3.53/(g1^7*g2^5) + g1^11*g2*t^3.87 + (g2^14*t^4.11)/g1^14 + (g2^17*t^4.28)/g1^5 + (2*g2^9*t^4.36)/g1^9 + (g2*t^4.43)/g1^13 + g1^4*g2^20*t^4.45 + 2*g2^12*t^4.53 + (6*g2^4*t^4.6)/g1^4 + (2*t^4.68)/(g1^8*g2^4) + t^4.76/(g1^12*g2^12) + 2*g1^5*g2^7*t^4.77 + (5*g1*t^4.85)/g2 + (2*t^4.93)/(g1^3*g2^9) + (3*g1^6*t^5.1)/g2^6 + (g2^2*t^5.58)/g1^14 + t^5.83/(g1^9*g2^3) + t^5.91/(g1^13*g2^11) - 3*t^6. + t^6.08/(g1^4*g2^8) + g1^13*g2^11*t^6.09 + g1^9*g2^3*t^6.17 + (g2^21*t^6.17)/g1^21 + (g2^24*t^6.34)/g1^12 + (2*g2^16*t^6.41)/g1^16 + (2*g1^14*t^6.42)/g2^2 + (g2^8*t^6.49)/g1^20 + (g2^27*t^6.5)/g1^3 + (2*g2^19*t^6.58)/g1^7 + (6*g2^11*t^6.66)/g1^11 + g1^6*g2^30*t^6.67 + (2*g2^3*t^6.73)/g1^15 + 2*g1^2*g2^22*t^6.75 + t^6.81/(g1^19*g2^5) + (6*g2^14*t^6.83)/g1^2 + (10*g2^6*t^6.9)/g1^6 + (5*t^6.98)/(g1^10*g2^2) + 2*g1^7*g2^17*t^7. + (3*t^7.06)/(g1^14*g2^10) + 4*g1^3*g2^9*t^7.07 + t^7.13/(g1^18*g2^18) + (10*g2*t^7.15)/g1 + (3*t^7.23)/(g1^5*g2^7) + (2*t^7.3)/(g1^9*g2^15) + g1^8*g2^4*t^7.32 + (5*g1^4*t^7.4)/g2^4 + (2*t^7.47)/g2^12 - (g1^13*t^7.57)/g2 + (3*g1^9*t^7.64)/g2^9 + (g2^9*t^7.64)/g1^21 + g1^22*g2^2*t^7.74 + (g2^4*t^7.89)/g1^16 + t^7.96/(g1^20*g2^4) - (4*g2^7*t^8.06)/g1^7 + (2*t^8.13)/(g1^11*g2) + t^8.21/(g1^15*g2^9) - 4*g1^2*g2^10*t^8.22 + (g2^28*t^8.22)/g1^28 + t^8.29/(g1^19*g2^17) - (8*g2^2*t^8.3)/g1^2 + g1^15*g2^21*t^8.32 - (3*t^8.38)/(g1^6*g2^6) + g1^11*g2^13*t^8.39 + (g2^31*t^8.39)/g1^19 + t^8.45/(g1^10*g2^14) + (2*g2^23*t^8.47)/g1^23 + (g2^15*t^8.54)/g1^27 - (9*g1^3*t^8.55)/g2^3 + (g2^34*t^8.56)/g1^10 + 2*g1^16*g2^8*t^8.64 + (2*g2^26*t^8.64)/g1^14 + (6*g2^18*t^8.71)/g1^18 + 2*g1^12*t^8.72 + (g2^37*t^8.73)/g1 - (g1^8*t^8.79)/g2^8 + (2*g2^10*t^8.79)/g1^22 + (2*g2^29*t^8.81)/g1^5 + (g2^2*t^8.87)/g1^26 + (6*g2^21*t^8.88)/g1^9 + g1^8*g2^40*t^8.9 + (3*g1^17*t^8.96)/g2^5 + (10*g2^13*t^8.96)/g1^13 + 2*g1^4*g2^32*t^8.98 - (g2*t^4.15)/(g1*y) - (g2^8*t^6.21)/(g1^8*y) - (g1*g2^11*t^6.38)/y - (2*g2^3*t^6.45)/(g1^3*y) - t^6.53/(g1^7*g2^5*y) - (g1^2*t^6.7)/(g2^2*y) + (g2^17*t^7.28)/(g1^5*y) + (2*g2^9*t^7.36)/(g1^9*y) + (g2*t^7.43)/(g1^13*y) + (2*g2^12*t^7.53)/y + (5*g2^4*t^7.6)/(g1^4*y) + (2*t^7.68)/(g1^8*g2^4*y) + (3*g1^5*g2^7*t^7.77)/y + (6*g1*t^7.85)/(g2*y) + (3*t^7.93)/(g1^3*g2^9*y) + (2*g1^6*t^8.1)/(g2^6*y) - (g2^15*t^8.26)/(g1^15*y) - (g2^18*t^8.43)/(g1^6*y) - (2*g2^10*t^8.51)/(g1^10*y) - (g1^3*g2^21*t^8.6)/y - (2*g2^13*t^8.68)/(g1*y) - (4*g2^5*t^8.75)/(g1^5*y) - (g2*t^4.15*y)/g1 - (g2^8*t^6.21*y)/g1^8 - g1*g2^11*t^6.38*y - (2*g2^3*t^6.45*y)/g1^3 - (t^6.53*y)/(g1^7*g2^5) - (g1^2*t^6.7*y)/g2^2 + (g2^17*t^7.28*y)/g1^5 + (2*g2^9*t^7.36*y)/g1^9 + (g2*t^7.43*y)/g1^13 + 2*g2^12*t^7.53*y + (5*g2^4*t^7.6*y)/g1^4 + (2*t^7.68*y)/(g1^8*g2^4) + 3*g1^5*g2^7*t^7.77*y + (6*g1*t^7.85*y)/g2 + (3*t^7.93*y)/(g1^3*g2^9) + (2*g1^6*t^8.1*y)/g2^6 - (g2^15*t^8.26*y)/g1^15 - (g2^18*t^8.43*y)/g1^6 - (2*g2^10*t^8.51*y)/g1^10 - g1^3*g2^21*t^8.6*y - (2*g2^13*t^8.68*y)/g1 - (4*g2^5*t^8.75*y)/g1^5 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
2842 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ \phi_1q_1\tilde{q}_2$ + $ M_5M_6$ | 0.6706 | 0.8484 | 0.7904 | [X:[], M:[0.7464, 0.7935, 0.6948, 0.8451, 1.1549, 0.8451], q:[0.8569, 0.3967], qb:[0.4484, 0.7582], phi:[0.385]] | t^2.08 + t^2.24 + t^2.31 + t^2.38 + 2*t^2.54 + t^3.54 + t^3.69 + t^3.85 + t^4.17 + t^4.32 + t^4.39 + t^4.46 + t^4.48 + t^4.55 + 4*t^4.62 + t^4.69 + t^4.76 + 2*t^4.77 + 3*t^4.85 + 2*t^4.92 + 3*t^5.07 + t^5.62 + t^5.77 + t^5.92 + t^5.93 - 2*t^6. - t^4.15/y - t^4.15*y | detail |